
1

Epson PX-8 Tips and Tricks
Martin Hepperle, November 2019

Contents

Contents ... 1
1. General ... 2
2. Using the MH-20 Disk Drive Simulator .. 2

Some examples using cpmtools: 4
3. Using the MH-20 Display Simulator .. 5

3.1.1. Text Mode Functions 7
3.1.2. Graphics Mode Functions 8
3.1.3. Example 9
3.1.4. Text Output from Turbo-Pascal 11
3.1.5. Source Code of Extensions 11

4. Opening the Case ... 18
5. Battery Replacement .. 19
6. Capacitor Replacement... 19
7. ROM Failure! ... 19
8. What about Speed? ... 22
9. Connecting to a P-40 Printer .. 24
10. Measuring Voltages .. 25

2

1. General

The PX-8 was small laptop-like computer produced by Epson around 1983.

While the HX-20 ran a proprietary operating system, the PX-8 was based on the CP/M system. This
allowed executing a wide range of application programs.

The dot matrix LCD screen shows a window of 8 lines by 80 characters into a virtual screen which can be
configured in several ways. In addition to text it can also display graphics with its resolution of 480  64
pixels.

The built-in cassette drive can be used to store programs and data and additional devices like external
RAM disks, flexible disk drive units, modem and a barcode reader were available.

The core of the operating system is stored in a ROM and two additional “ROM capsules” carry the
adapted Microsoft BASIC and additional CP/M utilities. These “replaceable ROM capsules” are a feature
which was not uncommon in those years. Several software programs like “Wordstar” were available. The
user can also create his own (EP)ROMs with the desired programs and data. The same concept is also
used in the PX-4. Other manufacturers of early laptops used a similar concept with replaceable EPROMs,
e.g. Hewlett-Packard with the MS-DOS system “Portable Plus”.

The serial RS-232C interface can be used to communicate with other computers or printers and modems.

A second “high speed serial interface” was intended to connect external disk drives. Other applications are
not directly supported by BASIC but the interface can also be used at a reduced speed of 4800 baud to
connect a printer. Finally a connector for a bar code reader and an analog-to-digital converter port are
built-into the box.

2. Using the MH-20 Disk Drive Simulator

The PX-8 can use internal or external RAM disks, but in both cases storage capacity is severely limited
and volatile if the batteries fail. Thus Epson offered external disk drive units like PF-10, TF-15 or TF-20.
These are mechanical delicate and difficult to find.

The MH-20 peripheral simulator, originally developed for the HX-20, has been adapted to support the PX-
8 with four external disk drives. Each diskette has an unformatted capacity of 320 KBytes. Deducting the
directory and system tracks about 278 KBytes of space are available to the user. The system tracks are not
used and wasted.

Figure 1: Connecting the MH-20 disk
simulator to the PX-8.

 PX-8

PF-10/TF-20

MH-20

D:

E:

F:

G:

H:

3

The simulator runs on a PC and a simple connection cable between the serial port of the PC (or USB-
to-RS-232C converter cable) and the PX-8 must be created. Figure 2 shows the wiring of this cable.

Figure 2: Left: Cable to connect the serial
interface to a PC.
Top: The Mini-DIN connector
must have a small outer
diameter to fit into the case.

Serial

RXD - 3

7 - POUT

2 - TXD

PIN - 6

1

6

DB9 - female
view on solder cups

RXD TXD GND

1 GND — GND 5
2 TXD → RXD 2
3 RXD ←TXD 3

RS-232C

Mini-DIN - 8-pin
view on solder cups

1 - GND

4

In contrast to the HX-20 the disk drive arrangement of the PX-8 can be configured and the drive letters
seen in CP/M will depend on the configuration.

Therefore the simulator uses four numbered disk images “PX_1.img” to “PX_4.img”. In a common
standard configuration CP/M drive D: corresponds to “PX_1.img” and G: is mapped to “PX_4.img”.

The simulator option diskconfig can be used to define the drive configuration. More information on
command line parameters for the MH-20 software can be found in the “HX-20 Tips and Tricks”
document.

The diskette images are simple raw images containing a sequence of logical CP/M records without any
additional information or interleave. They can be easily read and written by other external tools.

Each disk drive symbol has a context menu which allows importing or exporting diskette images in D88
format. This format is used by the PX-8 simulator written by Toshiya Takeda.

Directory and file handling as well as the translation into logical records of 128 bytes are implemented
inside CP/M. When the simulator is started, it looks for the four image files and reads them into memory –
if no or not all four image files are found, it creates and formats new image files.

Note that these images are handled completely independent from the file system used for the HX-20,
whose four drives are mapped to individual files residing in four subdirectories (“DISK_A” to “DISK_D”).
There is no interference between the two, so that the PX-8 and the HX-20 can be used with the same
installation of the MH-20 simulator.

If you want to use command line programs like the “CP/M-Tools” you can use the following disk
definition for the image files:

Epson PX-8 CP/M raw disk image
diskdef PX-8
 seclen 128
 tracks 40
 sectrk 64
 blocksize 2048
 maxdir 64
 skew 0
 boottrk 4
 os 2.2
end

Figure 3: Disk image parameters for cpmtools.

Some examples using cpmtools:

List files on disk image:

cpmls -f PX-8 PX_1.img

Copy a local file from the PC to the disk image (for user 0):

cpmcp -f PX-8 PX_1.img MANDEL_1.BAS 0:MANDEL_1.BAS

Copy a file (from user 0) from the disk image to a local file on the PC:

cpmcp -f PX-8 PX_1.img 0:MANDEL_1.BAS MANDEL_1.BAS

If you copy a file to the disk image file while the simulator is running, it will not notice this change. In this
case you can use the context menu to “Reload” the modified image file into the simulator).

5

3. Using the MH-20 Display Simulator

Because I had already written my display controller simulator MH-20 for the HX-20 I wanted to use some
of its functions also from the PX-8 and its Microsoft BASIC.

The HX-20 supports external display controllers through the high-speed serial interface directly from its
Epson-modified Microsoft BASIC. However, the PX-8 only supports disk drives. This is a pity, as the
operating system has all the core routines to send and receive the required EPSP packets – they are used
for the external mass storage devices. I guess that the Epson engineers arrived at a point where the words
of HP engineer Bill Wickes “life is short and ROM is full” became true again. So they omitted the
graphics and text output functions for external screens from BASIC and also from CP/M

In general, the CP/M system is designed to make redirection of textual input and output easy. One could
create a BIOS addition which would allow listing to an external screen and reading from an external
keyboard. However, CP/M has no idea about graphics output so that I chose a different solution.

This is based on the assumption that most of the small programs will be written in BASIC. Thus BASIC
callable functions would be convenient.

Microsoft BASIC offers two mechanisms for interfacing to machine language routines: the simple USR
functions (which support one parameter only) and the CALL statements (which support multiple
parameters). I decided to go with the CALL statement.

The CALL statement requires the address of the routine to call. It prepares the parameters for the subroutine
and then calls the routine. Of course, the routine must be resident in memory.

On the PX-8 machine language routines can be loaded in two places:

 One can tell BASIC to reduce its size and leave some space above its allocated memory. The
command line options or the MEMSET command are used for this purpose. Then one can load the
machine language programs into this location, e.g. by using a sequence of POKE statements. Each
time BASIC is terminated, the memory area is freed and is overwritten by other programs.
Therefore the machine language program must be loaded every time when BASIC is started.

 The PX-8 offers another option which is called User-BIOS. The CONFIG.COM program allows
reserving a memory block between the RAM-disk and the BDOS and BIOS. Like the RAM-disk
this area is protected from being overwritten by a soft reset. This makes it possible to load a
“permanent” system extension.

6

Figure 4: Memory map of the PX-8 under CP/M and BASIC. The User-BIOS is located above the
RAM disk and protected during normal CP/M system operation.

System Area

BASIC Interpreter

BASIC Program

BASIC Variables

BASIC Strings

Stack
Machine Language Area
BDOS Tables
BIOS Tables

RAM Disk

User BIOS

System Buffers
System Variables
System Routines

100H

0H

FFFFH

Address
*
indicates values for

international version

B
D

O
S

 =
 [

0
0

0
6

]
+

 [
0

0
0

7
]*

2
5

6

32 KBytes

EC00H

*

MBASIC

100H100H

100H100H

CCP

CP/M

8000H

800H

TPA

32 KBytes

BASIC Work Area

M
a

c
h

in
e

 L
a

n
g

u
a

g
e

A
re

a
[7

D
3

8
]

+
 [

7
D

3
9

]*
2

5
6

13FFH

*
13FFH

*

max. 24 KB

headerheaderEBF0H

*

4000H

2000H

6000H

A000H

C000H

(size in 1KB units at SIZRAM = F009)H

*

(size also at YSIZERAM = F6A8)H

*

TOPRAM *(F076)H

*

directorydirectory

checksumschecksums

datadata

(size in 256 Bytes units at USERBIOS = F00B)H

*blocks of
256B (100)H

blocks of
1KB (400)H

7

I decided to use the User-BIOS area and to write a small extension which loads itself into this area. It
contains routines which can easily be called from BASIC or other languages.

The usage of this extension requires the following steps:

 Use CONFIG.COM to reserve a User-BIOS area of 2 blocks (2 x 256 = 512 bytes).
 Load the extension into this area by simply executing MHEXT.COM. This will install the User-BIOS

and replace the PUNCH routine.
Executing MHEXT.COM again, will reload the User-BIOS and restore the original PUNCH routine.

 Use the correct addresses and parameter types for the individual routines.

Notes:

 It is absolutely necessary to use the given routine addresses (e.g. &HEA35 for the GMODE routine).
With an incorrect address you will crash your system. The names of the routines in the BASIC
program are normal variables in BASIC and can be named as you like. They simply hold the
addresses of the corresponding routines.

 It is equally important to use the correct parameter types – usually these are 2-byte Integer
variables, which can be declared with a trailing percent “%” character.

 The graphics coordinates are given in pixels. The origin of the graphics screen is the upper left
corner, x increases towards the right and y downwards.

 If you want to test whether the extension is properly installed, you can peek at the memory range
from &HEBF0 to &HEBF9. It should contain the string “UBMH-AERO-“. “UB” for “User-BIOS” and
“MH-AERO-“ is my signature.

The extensions include the following functions for writing text to the external screen in Text mode and to
draw lines in Graphics mode.

3.1.1. Text Mode Functions

TMODE = &HEA2C
CALL TMODE (BCOLOR%)

Mode Can be used in Text or Graphics mode
Description Switch the display mode of the external display to Text mode.
Parameter BCOLOR% [0,1,2,3]: the background color

TCURPOS = &HEA53
CALL TCURPOS (C%, R%)

Mode Text
Description Locate the cursor at a given column and row.
Parameters C% the cursor column position
 R% the cursor row position

TCHAR = &EA6D
CALL TCHAR (C%)

Mode Text
Description Output a character given by its ASCII code at the current cursor position. You can use

control characters like 12 to clear the test screen or 9 to tab forward.

8

Parameters C% [0…255]: the character code to print

3.1.2. Graphics Mode Functions

GMODE = &HEA35
CALL GMODE (BCOLOR%)

Mode Can be used in Text or Graphics mode
Description Switch the display mode of the external display to GRAPHICS mode.
Parameter BCOLOR% [0,1,2,3]: the background color

GLINE = &HEA00
CALL GLINE (X0%, Y0%, X1%, Y1%, COLOR%)

Mode Graphics mode
Description Draw a line with a given color.
Parameters X0%, Y0% the start point in pixels
 X1%, Y1% the end point in pixels
 COLOR% [0…3]: the color index

GPEN = &EABD
CALL GPEN (COLOR%)

Mode Graphics mode
Description Select a pen. This pen is used for all following GDRAW commands.
Parameter COLOR% [0…3]: the pens color index

GMOVE = &EA82
CALL GMOVE (X%, Y%)

Mode Graphics mode
Description Move the current pen position to the given point. Nothing is drawn on the screen. This

command is useful in conjunction with the GDRAW command.
Parameters X%, Y% the point in pixels

GDRAW = &EA8F
CALL GDRAW (X%, Y%)

Mode Graphics mode
Description Draw a line from the current pen position to the given point and update the current point.

This function is useful when a larger polygon shall be drawn. The GLINE command
requires the transfer of three additional and partially redundant parameters in this case.

Parameters X%, Y% the point in pixels

9

3.1.3. Example

The following BASIC program contains a simple demonstration of these functions.

10 REM ---------------------------------
20 REM DEMO for MHEXT (Epson PX-8)
30 REM MHEXT must be in USER BIOS area
40 REM Martin Hepperle, 2019
50 REM ---------------------------------
60 REM The adresses of the functions:
70 TMODE=&HEA2C
80 GMODE=&HEA35
90 GLINE=&HEA00
100 CURPOS=&HEA53
110 TCHAR=&HEA6D
120 GPEN=&HEABD
130 GMOVE=&HEA82
140 GDRAW=&HEA8F
150 REM ---------------------------------
160 REM Demo starts here
170 C%=0
180 CALL GMODE(C%)
190 REM GOSUB 670
200 X0%=240 : Y0%=400 : CALL GMOVE(X0%,Y0%)
210 C%=1 : R=200
220 FOR S=0 TO 32 STEP .15708
230 IF C%=3 THEN C%=1 ELSE C%=C%+1
240 CALL GPEN(C%)
250 X0%=240+R*SIN(S)
260 Y0%=200+R*COS(S)
270 R=R-1
280 CALL GDRAW(X0%,Y0%)
290 NEXT S
300 Y0%=2 : Y1%=400
310 C%=0
320 FOR X0%=1 TO 480 STEP 4
330 X1%=480-X0%
340 C%=C%+1
350 CALL GLINE(X0%,Y0%,X1%,Y1%,C%)
360 NEXT X0%
370 X0%=2 : X1%=480
380 FOR Y0%=1 TO 400 STEP 4
390 Y1%=400-Y0%
400 C%=C%+1
410 CALL GLINE(X0%,Y0%,X1%,Y1%,C%)
420 NEXT Y0%
430 FOR X%=0 TO 480 STEP 2
440 Y0%=150*(1+COS(X%*3.14/120)^5)
450 Y1%=150*(1+SIN(X%*3.14/120)^3)
460 IF Y0%>Y1% THEN C%=1 ELSE C%=0
470 CALL GLINE (X%,Y0%,X%,Y1%,C%)
480 NEXT X%
490 REM ---------------------------------
500 C%=0
510 CALL TMODE(C%)
520 C%=12
530 CALL TCHAR(C%)
540 C%=12
550 CALL TCHAR(C%)
560 FOR C%=32 TO 127
570 X%=RND*80 : Y%=RND*24
580 CALL CURPOS(X%,Y%)
590 CALL TCHAR(C%)
600 IF (C% MOD 8) <>0 THEN GOTO 680
610 X%=1 : Y%=1
620 CALL CURPOS(X%,Y%)
630 T$=TIME$
640 FOR I=1 TO LEN(T$)
650 K%=ASC(MID$(T$,I,1))

10

660 CALL TCHAR(K%)
670 NEXT I
680 NEXT C%
690 X%=1 : Y%=1
700 CALL CURPOS(X%,Y%)
710 END
720 REM --- DEBUG print packet ---
730 R=&HEB0B
740 PRINT "EPSPKT: ";
750 FOR K=1 TO 16
760 PRINT HEX$(PEEK(R))+" ";
770 R=R+1
780 NEXT K
790 PRINT
795 REM --- DEBUG print receive buffer ---
800 R=&HEB1B
810 PRINT "RCVBUF: ";
820 FOR K=1 TO 16
830 PRINT HEX$(PEEK(R))+" ";
840 R=R+1
850 NEXT K
860 PRINT
870 R=&HEB33
880 PRINT "ERR: ";HEX$(PEEK(R))
890 RETURN

Figure 5: Some results produced by the PX-8 MHEXT-Demo program.

11

Figure 6: You can also dig deep into the red sea or fly high above it.

3.1.4. Text Output from Turbo-Pascal

The usual assignments of logical devices to physical devices are:

CON: is CRT:
RDR: is UR1:
PUN: is UP1:
LST: is LPT:

You can use WriteLn(Aux,’Hello MH-20, greetings from PX-8’); to send the string through the
Serial interface and display it on the MH-20 simulator screen.

You can use WriteLn(Lst,’Hello MH-20, greetings from PX-8’); to send the string to the RS-232C
interface and display it in a terminal program. The baud rate of the RS-232C interface for printer output
can be configured with the CONFIG.COM program.

Remember that pressing ^P is the standard CP/M way to toggle duplicating CON: output to the LST:
device, which is the RS-232C interface.

3.1.5. Source Code of Extensions

For completeness and archiving purposes a listing of the assembler code follows.

;
; MH-EXTensions MHEXT
;
; Martin Hepperle, 2019
;
; Some routines for the Epson PX-8 CP/M computer

12

; to send EPSP commands to an external
; screen simulator.

;
; - Requires two pages (512 Bytes) User-BIOS RAM)
; This space must be reserved with CONFIG.COM.
; - Must be loaded once into User-BIOS area by
; executing MHEXT.COM
; - Note that all parameters MUST be given as
; Integers (append % to the variable names).
;
; How to call from BASIC:
; =======================
; TMODE=&HEA2C
; CALL TMODE (BGCOLOR%)
; Any mode: Switch the display mode of the external display
; to TEXT mode.
; BGCOLOR% = [0,1,2,3] the background color
;
; CURPOS=&HEA53
; CALL CURPOS (C%, R%)
; TEXT mode: Locate the cursor at a given column and row.
; C%, R% the cursor position in columns, rows
;
; CHROUT=&EA6D
; CALL CHROUT (C%)
; TEXT mode: Output a character given by its ASCII code
; at the current cursor position.
; C% the character code to print
;
; GMODE=&HEA35
; CALL GMODE (BGCOLOR%)
; Any mode: Switch the display mode of the external display
; to GRAPHICS mode.
; BGCOLOR% = [0,1,2,3] the background color
;
; GLINE = &HEA00
; GRAPHICS mode: Draw a line with a given color.
; CALL GLINE (X0%, Y0%, X1%, Y1%, COLOR%)
; X0%, Y0% the start point in pixels
; X1%, Y1% the end point in pixels
;
; GPEN = &EABD
; GRAPHICS mode: Select a pen. This pen is used for
; all following GDRAW commands.
; CALL GPEN (C%)
; C% the pen color index [0...3]
;
; GMOVE = &EA82
; GRAPHICS mode: Move the pen position to the given point.
; CALL GMOVE (X%, Y%)
; X%, Y% the point in pixels
;
; GDRAW = &EA8F
; GRAPHICS mode: Draw a line to the given point
; and update current pen location.
; CALL GDRAW (X%, Y%)
; X%, Y% the point in pixels
;
; How to build and load:
; ======================
;
; M80 MHEXT,MHEXT=MHEXT/Z
; L80 MHEXT/N,MHEXT/X/E
; MHEXT
;
BDOS EQU 00005H ; BDOS call
WBOOT EQU 00001H ;
SLVFLG EQU 0F358H ;
UBSIZE EQU 0F00BH ; size of User-BIOS (paras)

13

TEST EQU 0 ; simulate BASIC call

; enable Z80 Zilog Mnemonics
.Z80
;--------------------------------
 ; check User-BIOS size
 LD A,(UBSIZE)
 CP 2
 JP Z,CKINSTALL ; o.k.
 LD DE,ERRMSG
 JP DONE
;--------------------------------
CKINSTALL:
 ; check whether new PUNCH routine is installed
 LD IX,(WBOOT) ; address of WBOOT routine
 LD BC,0010H
 ADD IX,BC ; IX -> PUNCH
 LD B,(IX+1) ; get current PUNCH
 LD C,(IX+0) ; BC: current routine
 LD DE,NEWPUN ; DE: new routine

 LD A,D ; BC == DE ?
 CP B ; compare only high byte
 JP NZ,NOTINSTALLED

; installed: restore from SAVPUN
 LD BC,(SAVPUN) ; old PUNCH routine
 LD (IX+1),B ; restore PUNCH
 LD (IX+0),C ; into BIOS
 CALL INSTALL
 LD DE,UNSTMSG
 JP DONE

NOTINSTALLED:
 CALL INSTALL
 LD (SAVPUN),BC ; save current PUNCH
 LD (IX+1),D ; install NEWPUN
 LD (IX+0),E ; into BIOS
 LD DE,INSTMSG

DONE:
 LD C,09H
 CALL BDOS

 JP 0000H ; done
;--------------------------------
INSTALL:
 ; load code into USER -BIOS memory
 EXX ; save BC, DE, HL

 LD HL,SOURCE
 LD DE,DEST
 LD BC,LEN
 LDIR ; copy LEN bytes to DEST

 ; fix target address call
 LD HL,(WBOOT) ; address of WBOOT routine
 LD BC,0072H
 ADD HL,BC ; +72H
 LD (ADDR+1),HL

 CALL CHKSUM

 EXX ; restore BC, DE, HL
 RET
;--------------------------------
; calculate the checksum of the User-BIOS header
CHKSUM:

14

 LD IY,HEADER
 LD B,0FH ; 15 bytes
 LD A,00H ; initial value
CRCLOOP:
 SUB (IY) ; subtract byte from A
 INC IY
 DEC B
 JP NZ,CRCLOOP
 LD (IY),A ; store checksum
 RET
;--------------------------------
ERRMSG: 'Error: User-BIOS of 2 paragraphs needed',13,10,'$'
INSTMSG: 'User-BIOS installed, PUNCH replaced.',13,10,'$'
UNSTMSG: 'User-BIOS installed, PUNCH restored.',13,10,'$'
;--------------------------------

; ---------------------------
 ;ASEG
SOURCE:

.PHASE 0EA00H ; to USER BIOS area

DEST:

;============================
GLINE:
 ; BASIC CALL GLINE (X0%, Y0%, X1%, Y1%, COLOR%)
 ; HL -> X0
 ; DE -> Y0
 ; BC -> &X1, &Y1, &COLOR

IF TEST
 ; test setup
 LD HL,X0_ ; HL -> X0
 LD DE,Y0_ ; DE -> Y0
 LD BC,PKT_ ; BC -> &X1, &Y1, &COLOR
ENDIF

 ; --- get 2 bytes from *HL to *IX
 LD IX,DATA ; destination address
 CALL GETWRD

 ; get Y0 from *DE
 PUSH DE
 POP HL ; move DE to HL
 CALL GETWRD

 ; get X1 from *HL <- BC
 CALL GETADR ; HL now has address of X1
 CALL GETWRD

 ; get Y1 from *HL
 CALL GETADR ; HL has address of Y1
 CALL GETWRD

 ; get COLOR from *HL
 CALL GETADR ; HL has address of C
 CALL GETBYT ; get C% from *HL

GLINEX: ; entry from GDRAW
 ; prepare EPSP packet header
 LD A,0C8H ; FNC=0xC8: draw line
 LD (FNC),A
 LD A,08H ; send 9 data bytes - 1 = 8
 LD B,00H ; want no reply
 LD C,01H ; reply: 1 retcode = 1
 JP SENDPKT
;============================
TMODE:

15

 ; BASIC CALL TMODE (COLOR%)
 ; HL -> COLOR%

 LD A,01H ; TEXT=1
 LD (DATA),A
 DEC A ; GRAPHICS=0

 JP SETMODE

;============================
GMODE:
 ; BASIC CALL GSMODE (COLOR%)
 ; HL -> COLOR%

 LD A,00H ; TEXT=0
 LD (DATA),A
 INC A ; GRAPHICS=1

SETMODE:
 LD (DATA+1),A ; set GRAPHICS
 LD IX,DATA+2
 ; get COLOR from *HL
 CALL GETBYT ; get COLOR from *HL

 ; prepare EPSP packet header
 LD A,093H ; FNC=0x93: set screen mode
 LD (FNC),A
 LD A,02H ; send 3 data bytes - 1 = 2
 LD B,01H ; want reply
 LD C,08H ; reply: 1 ret + 1 header? +
 ; 5 header + 1 data = 8
 JP SENDPKT

;============================
CURPOS:
 ; BASIC CALL CURPOS (X%, Y%)
 ; HL -> X% (1 byte
 ; DE -> Y% (1 byte)

 ; get X% from *HL
 LD IX,DATA
 CALL GETBYT ; get X% from *HL
 ; get Y% from *DE
 PUSH DE
 POP HL ; move DE to HL
 CALL GETBYT ; get Y% from *HL

 ; prepare EPSP packet header
 LD A,0C0H ; FNC=0xC0: set cursor position
 LD (FNC),A
 LD A,01H ; send 2 bytes - 1 = 1
 LD B,00H ; want no reply
 LD C,01H ; reply: 1 retcode
 JP SENDPKT
;============================
CHROUT:
 ; BASIC CALL CHROUT (C%)
 ; HL -> C%

 ; get C% from *HL
 LD IX,DATA
 CALL GETBYT ; get X% from *HL
CHREXO:
 ; prepare EPSP packet header
 LD A,92H ; FNC=0x98: write character
 LD (FNC),A
 LD A,00H ; send 1 byte - 1 = 0
 LD B,01H ; want reply
 LD C,09H ; reply: 1 ret + 1 header? +

16

 ; 5 header + 2 data = 9
 JP SENDPKT
;============================
GMOVE:
 ; BASIC CALL GMOVE (X0%, Y0%)
 ; HL -> X0
 ; DE -> Y0
 ; --- get 2 bytes from *HL CURX
 LD IX,CURX ; destination address
 CALL GETWRD

 ; --- get 2 bytes from *DE CURY
 PUSH DE
 POP HL ; move DE to HL
 CALL GETWRD

 RET
;============================
GDRAW:
 ; BASIC CALL GDRAW (X1%, Y1%)
 ; HL -> X1
 ; DE -> Y1

 PUSH HL ; save

 ; --- get 2 bytes from CURX to X0
 LD HL,(CURX) ;
 LD (X0),HL ;
 ; --- get 2 bytes from CURY to Y0
 LD HL,(CURY) ;
 LD (Y0),HL ;

 POP HL ; restore

 ; --- get 2 bytes from *HL to X1
 LD IX,X1 ; destination address
 CALL GETWRD

 ; --- get 2 bytes from *DE to Y1
 PUSH DE
 POP HL ; move DE to HL
 CALL GETWRD

 LD A,(CURC) ; get color
 LD (IX),A

 ; save position for next GDRAW
 LD HL,X1
 LD DE,CURX
 LD BC,04H ; 2 x 16 bit words
 LDIR ; save X1 and Y1 in CURX/CURY

 JP GLINEX

;============================
GPEN:
 ; BASIC CALL GPEN (C%)
 ; HL -> COLOR
 ; --- get 2 bytes from *HL CURX
 LD IX,CURC ; destination address
 CALL GETBYT

 RET

;--------------------------
SENDPKT:
 ; data packet is ready to go, load remaining data
 ; A=SIZ, B=RCVFLG, C=RCVLEN
 LD (SIZ),A ; datalen - 1

17

 ADD A,08H ; send: 1 6301 CODE +
 ; 6 header + (SIZ + 1) data
 LD (SNDLEN),A
 LD A,B
 LD (RCVFLG),A ;
 LD A,C
 LD (RCVLEN),A ;

 LD A,080H
 LD (SLVFLG),A ; activate slave

 LD DE,SLVPKT
ADDR:
 CALL 0000 ; to be patched
 LD (ERR),A
 LD A,00H
 LD (SLVFLG),A ; deactivate slave
IF TEST
 JP 0000H
ENDIF
 RET
 ;--------------------------
GETWRD:
 LD A,(HL) ; get byte from *HL to *(IX+1)
 LD (IX+1),A
 INC HL
 LD A,(HL) ; get byte from *HL to *IX
 LD (IX),A
 INC IX ; prepare...
 INC IX ; ...for next item
 INC HL
 RET
 ;--------------------------
GETBYT:
 LD A,(HL) ; get byte from *HL to *IX
 LD (IX),A
 INC IX ; prepare for next item
 RET
 ;--------------------------
GETADR: ; read address *(BC) to HL
 LD A,(BC) ; and increment BC to next address
 LD L,A ; lo to L
 INC BC ; next byte
 LD A,(BC)
 LD H,A ; hi to H
 INC BC ; ready for next address
 RET ; HL has address
;--------------------------------
CURX: DW 0000H ; previuous X
CURY: DW 0000H ; previuous Y
CURC: DB 01H ; color
;--------------------------------
EPSPKT:
CODE: DB 64H ; 6301 CODE: send with header
RCVFLG: DB 00H ; 0: no reply expected, 1: receive reply
FMT: DB 00H ; 0: send from PX-8, 1: received by PX-8
DID: DB 30H ; destination: MH-20
SID: DB 22H ; sender: PX-8
FNC: DB 00H ; function code
SIZ: DB 00H ; len(DATA-1)
DATA: ; data[0-SIZ]
X0: DB 00H,00H ; 16-bit integer
Y0: DB 00H,00H ; 16-bit integer
X1: DB 00H,00H ; 16-bit integer
Y1: DB 00H,00H ; 16-bit integer
COLOR: DB 00H ; 8-bit integer
EPSEND:
;--------------------------------
RCVBUF: DB 0,0,0,0,0,0,0,0 ; here: max 16 bytes

18

 0,0,0,0,0,0,0,0
RCVEND:
;--------------------------------
SLVPKT: DW EPSPKT ; address
SNDLEN: DW 0 ; # of bytes to send
 DW RCVBUF ; address
RCVLEN: DW 10H ; must be exact # of bytes to receive
SLVEND:
;--------------------------------
ERR: DB 0
;--------------------------------
IF TEST
; BASIC SETUP with Integer values
X0_: DB 00H,01H ; via HL
Y0_: DB 00H,02H ; via DE
X1_: DB 00H,40H ; block via pointer in BC
Y1_: DB 00H,80H ; block
C_: DB 00H,01H ; block
PKT_: DW X1_,Y1_,C_ ; block with parameters 3...
ENDIF
;--------------------------------
SAVPUN: DW 0000H ; old PUNCH routine
;--------------------------------

NEWPUN:
 ; copy CHR% to DATA
 LD A,C
 LD (DATA),A
 JP CHREXO ; return from there

RELEASE: ; does nothing
 RET

 FILL EQU TOPUSER-16-$; length of gap to fill
 DS 00B2H ; to move SAVPUN and HEAADER to end
 ; must equal FILL !

.DEPHASE
.PHASE 0EBF0H
; ORG 0EBF0H ; to top of USER BIOS area

HEADER:
 DB "UB" ; ID "User Bios"
 DB "MH-AERO-"; name
 DB 02H ; size
 DB 00H ; overwrite flag
 DW RELEASE ; release address
 DB 00H ; ZERO
 DB 00H ; checksum
TOPUSER:
 LEN EQU $-DEST ; length of code
 LEN2 EQU $-SAVPUN ; length of HEADER

 END

4. Opening the Case

Refer to the service manual to open the device. A few additional words may be helpful.

First unplug and remove the main battery to avoid short circuiting it. You should also switch off the
backup battery using the slide switch in the battery compartment.

Before removing the printed circuit board you must remove the small cover to the right of the LCD
display. It is held by a single screw from the back. Careful: the small spring pushing the display unlock
slide lever may be easily lost. When this cover is removed you can easily unplug the display flexprint

19

cable. This is explained in the manual, but easily overlooked. Another spring loaded component to be lost
is the rod which pushes the display lid open. It is held in place by the large hollow screw on the metalized
insulation sheet.

Two additional flexprint connectors for the cassette drive and for the keyboard can be found under the
bottom shell, but these can be unplugged from the bottom without the risk of damage.

5. Battery Replacement

The PX-8 has two batteries: a larger 4.8 V main battery which is identical to the pack used in the HX-20
except for the plug, and a second smaller 4.8 V pack which is soldered to the main board. The latter
battery powers the RAM disk and maintains system settings. The charging circuits are designed for Ni-Cd
cells so that Ni-MH cells can be used, but should not be left too long in the charging state.

You can compose a new main battery from four Sub-C Ni-Cd cells. These should be as short as possible
as the compartment is rather tight. You could also use four slightly smaller cells – todays cells have higher
capacity than the old Ni-Cd cells.

The internal buffer battery can be rebuilt from four cells of 1/3 AA Mignon size, which must be arranged
in line. By soldering two leads cut e.g. from a resistor or capacitor you can solder it to the PCB like the
original battery. Otherwise a strip of self adhesive foam tape may be your friend.

6. Capacitor Replacement

Like on the HX-20 of the same era all electrolytic capacitors in the PX-8 tend to leak. Especially on the
larger capacitors this is visible in the form of white crystals on the leads and dull solder points. The
smaller ones are also leaking, but due to the small amount of electrolyte this is less visible. Like in the
HX-20 some capacitors are tricky to remove due to the small hole diameters in the PCB. Often, adding
some fresh solder helps to remove the old solder. Replace all 21 electrolytic capacitors, ideally with
miniature types. If you use larger ones you may have to mount them flat on the PCB to avoid interference
with the case.

Designation Capacity Voltage Dimensions
C1, C6, C7 47 μF 10V 5.5  9.5 mm
C2, C3, C4, C5 33 μF 10V 5.5  9.5 mm
C8, C9 220 μF 10V 8.5  9.5 mm
C10, C11, C74 10 μF 16V 5.5  9.5 mm
C12, C13, C14, C15 100 μF 16V 8.5  9.5 mm
C16 330 μF 16V 10.5  13 mm
C17 33 μF 25V 6.5  9.5 mm
C18, C19, C73 1 μF 50V 5.5  9.5 mm

Table 1: These electrolytic capacitors have to be replaced on the main PCB.

7. ROM Failure!

While I was working on my BIOS extension, suddenly after a few hours of work, the PX-8 would not
access the B: and C: drives (ROM capsules) anymore. I always received a BDOS error message. It was
still possible to access the RAM disk as well as external disks simulated with my MH-20 peripheral
simulator. Argh!

20

After the first frustration I started to look into the Technical Manual. I learned that there is an extra power
regulator which supplies 5 V to the ROM capsules. To conserve energy, this voltage is only provided
when the ROMs are used.

Closer examination showed that a voltage was indeed applied each time together with a low voltage on the
Chip Enable signal CE/ (Output Enable OE/ was always low).

However, on my PX-8 all I could measure was only about 2.5 V at the ROM sockets. No change was
observed when the ROMs were removed. This low voltage was not enough to drive the ROMs.

The voltage must be applied rapidly when the ROM is activated and the high power demands of the ROM
must be supported immediately. For this purpose the relatively complex power booster circuit driven by a
clock of 35 kHz is built into the system. This circuit avoids that the power peak of switching the ROMs on
leads to a voltage drop in the main system.

At the end of this circuit we find a Zener diode which stops the clock signal when the nominal voltage of
5 V is exceeded.

Figure 7: The 5 V voltage regulator circuit.

Note the Zener diode inside the „Constant-
voltage circuit“. The regulated output voltage is
provided at the upper right. Q22 (below Q28)
stops the clock leaving the „Oscillator circuit“ by
connecting it to ground.

Figure 8: Initial configuration: ROMs and
Zener Diode ZD5 installed.
Voltage at ROM socket.

Here the ROM is activated by issuing a DIR C:
command and after a short time (BDOS error)
the voltage falls slowly back to zero, The voltage
at VSS of the ROM socket is about 2.4V, with a
short peak to 3.7 V. This is not enough for the
ROM, it should see about 5V.

21

Figure 9: Configuration 1: Zener Diode
ZD5 clipped, ROMs removed.

After removing the diode ZD5 (HZ 5C-3) we
measure a voltage between 4.8 … 28.8V, ΔU =
24V at VSS of the ROM socket. This voltage is
of course, too high, but demonstrates that the
booster circuit works.

In order to test the power characteristics of the
circuit, I added a 168 Ω resistor to simulate the
load of one ROM capsule (about 30 mA).

Figure 10: Configuration 2: Zener Diode
ZD5 clipped, ROMs removed,
load resistor added.

We now notice that the OFF voltage drops to 0V
and the voltage in the ON condition reaches
about 16V. This is still too high, but also shows
that the free running circuit can supply the
desired power.

Hoping that the troublemaker it was not Q22 but
ZD5 the next logical step was to replace the
Zener diode.

I only had a 5.1 V Zener at hand and replaced it.
The load resistor stayed in place to be safe. Then
a DIR C: command was issued again and the
oscilloscope greeted me with a nice constant
voltage under load of about 4.7 V. This is a bit
on the low side (a 5.3 V or 5.6 V Zener would
probably be a better replacement), but sufficient.

Figure 11: Configuration 3: Zener Diode
ZD5 replaced by 5.1 V diode, load
resistor added.

We also note the nice sharp corner when the
circuit is started, delivering the required constant
voltage almost immediately without exceeding
the target.

Removing the test equipment and replacing the
ROM capsules showed that I can now access B:
and C: again. Phew!

22

Figure 12: The Zener Diode ZD5 in its
natural habitat.

8. What about Speed?

For training I wrote an assembler version of the BYTE Eratosthenes Sieve benchmark and ran it to
perform the required 10 loops. The PX-8 took about 12.5 seconds for this test. The time does not include
the loading time from disk, which adds a few seconds to the total execution time.

The following source code can be compiled with the Microsoft M80 assembler.

;
; BYTE Eratosthenes Sieve Benchmark
;
; For Z-80 and CP/M
;
; Martin Hepperle, 12/2019
;
 .Z80

 ASEG ; COM file
 ORG 100H

BDOS EQU 0005H
PRINTS EQU 0009H

START:

 LD DE,MSG_1
 LD C,PRINTS
 CALL BDOS

 LD A,10 ; 10 iterations loop

NEXT:
 PUSH AF

 LD DE,0000 ; clear count
 LD (COUNT),DE

 ; set all FLAGS to 1
 LD A,1 ; fill value
 LD DE,1 ; increment

23

 LD HL,FLAGS ; start and index
 LD BC,FLEND ; end
 CALL FILL

 ; loop
 LD IY,0 ; i
 LD HL,FLAGS
L2:

 LD A,(HL) ; get FLAGS[HL]
 CP 1
 JP NZ,SKIP

 ; FLAGS[HL] == 1

 PUSH HL ; --- save FLAGS+i

 PUSH IY ; copy i...
 POP IX ; ...to IX
 ADD IX,IX ; i+i
 INC IX
 INC IX
 INC IX ; i+i+3
 PUSH IX
 POP DE ; increment = P
 LD A,0 ; fill value

 ADD HL,DE ; FLAGS+i+P

 CALL FILL

 LD DE,(COUNT)
 INC DE
 LD (COUNT),DE

 POP HL ; --- restore FLAGS+i

SKIP:
 INC IY ; i=i+1
 INC HL ; FLAGS+i
 ; loop while HL < FLEND
 PUSH HL
 AND A ; clear Carry
 SBC HL,BC ; compare with FLEND
 POP HL
 JP C,L2 ; HL > BC

DONE:
 POP AF
 DEC A
 JP NZ,NEXT

 LD DE,(COUNT) ; should be 1899d = 076Bh

 LD DE,MSG_2
 LD C,PRINTS
 CALL BDOS

 JP 0000H

; --------------------------------
; fill memory starting at HL
; up to BC (exclusive)
; with value in A.
; increment is in DE
FILL:
 PUSH HL ; save
 AND A ; clear carry

24

 SBC HL,BC ; compare with FLEND
 POP HL ; restore
 JP NC,FILEX ; HL > BC
 LD (HL),A ; set flag
 ADD HL,DE ; increment HL=HL+De
 JP FILL
FILEX:
 RET

MSG_1: 'Sieve started.',7,13,10,'$'
MSG_2: 'Sieve stopped.',7,13,10,'$'

COUNT: DB 0,0 ; will become 1899d

FLAGS: DS 8191
FLEND:

 END

9. Connecting to a P-40 Printer

The Epson P-40 is a small, battery powered thermal printer. It has a very small buffer of two characters
only. Therefore proper handshaking is essential for interfacing. The printer uses hardware handshaking by
switching its DTR line. This line must be connected to the CTS line on the PX-8.

I prefer to use two cables: the first cable for the PX-8 provides an IBM-AT compatible 9-pin D-SUB
connector and the second cable for the P-40 provides the matching counterpart. With this system I can
easily connect most of my computers and devices. If you prefer a single cable you can combine both into a
specific PX-8 – P-40 cable.

Figure 13: Cable to convert the RS232
interface to a PC-AT style layout.

Figure 14: Cable to connect the PC-AT-Style
connector to the P-40 printer.

RS-232C

RXD - 3

7 - DTR

2 - TXD

DSR - 6

Mini-DIN - 8-pin
view on solder cups

1 - GND
4 - RTS

5 - CTS
8 - DCD

1

6

DB9 - male
view on solder cups

TXDDTRGND

CTSRI
(n.c.)

GND 1 — 5 GND
TXD 2 → 3 TXD
RXD 3 ← 2 RXD
RTS 4 → 7 RTS
CTS 5 ← 8 CTS
DSR 6 ← 6 DSR
DTR 7 → 4 DTR
CD 8 ← 1 DCD

RS-232C

DSRRTS

DCDRXD

1

6

DB9 - female
view on solder cups

TXD
(n.c.)
DTR GND

CTS RI
(n.c.)

GND 5 — 5 GND
RXD 3 ← 3 TXD
DTR 2 → 8 CTS

GND - 5

3 - RXD

n.c. - 4

1 - n.c.

2 - DTR

RS-232C
RS-232C

Male DIN - 6-pin
view on solder cups

RTS
(n.c.)

(n.c.)
DCD

6 - n.c.

(n.c.)
RXD

DSR
(n.c.)

25

10. Measuring Voltages

The PX-8 comes with a simple Analog-To-Digital converter built in. While its accuracy is rather limited
to six bits, it is sufficient to test batteries and to perform simple tests. With a small battery it can also be
used to interface to a potentiometer or a one-dimensional control device (e.g. a lever or a steering wheel).

Figure 15: Cable and plug box to connect 2 V or 5 V to the ADC input. The two resistors (e.g.
3.47 kΩ and 2.3 kΩ) must have a ratio of 1.5 to reduce 5V to 2V.

The converter reads up to 2V so that a voltage divider must be used to measure higher voltages. I designed
a small box for connecting 2V and 5V input signals for quick testing of dry batteries and Lithium cells. A
calibration with a digital voltmeter should be performed to define the final scaling constants.

The BIOS also offers a function to read the voltage of the PX-8 battery. Here an offset has to be taken into
account, the constants in the program were derived from a graph in the Technical Manual.

The reading and display can be performed with a short Turbo-Pascal program.

{$C-,U-} { for KeyPressed }
Program ADC;
Const
 ADC = $25; { $6F / 3 }
 U_EXT = $0000;
 U_BATT = $0003;
Var
 ADC_Value : Byte;
 GoOn : Boolean;

Begin
 Write(Chr(27),'2'); { hide Cursor }
 Write(Chr(27),'*'); { clear screen }

 GoOn := True;

 While GoOn Do
 Begin
 If KeyPressed Then GoOn := False;

 Write(Chr(27),'=',Chr(32),Chr(32)); { home }

 { EXTERNAL Voltage }
 ADC_Value := Bios(ADC,U_EXT);
 WriteLn(ADC_Value/127.5:6:3,' V [2V external]');
 WriteLn(ADC_Value/51.7:6:3, ' V [5V external]');

26

 { BATTERY Voltage }
 ADC_Value := Bios(ADC,U_BATT);
 WriteLn(ADC_Value/41.84-0.479:6:3,' V [battery]');
 End;
 Write(Chr(27),'3'); { show Cursor again }
End.

