Epson Hx-28 Tips and Tricks

Martin Hepperle, November 2018 — January 2024

Contents
| € 155 1 <) - Y PRSP 2
2. POWET SUPPLY ettt st e et e e be b e b e e taesnteenbeenseenseenseentaens 3
2.1, TransfOrmMEr UNIccoocviiiieiieiieieesee e ste ettt esteeseeseeesesessseesseessaessaesseessnesssesssesssesssessseensns 3
2.2, Replacing the Battery........ccooieiiiiieieiieiee ettt sttt st ereeneens 4
2.3, Charging the Batterycccveciieriierieiie ettt esieest et steste e e seesseesteessaesssesssesnseesseenseensns 5
3. Variations Of the ROMScccuiiiiiiiiiiiiiie ettt ettt saessaessbessbe e saesseesssesssesnseenseeseens 5
4. NEW PrInter PAPETccviiiiiiiiicie ettt ettt ettt e et ettt e e e saesnsessseesseensaenseenseens 5
5. NEW Printer RIDDONSocciiiiieiiiiie ettt sttt e e e ssaessseesbe e e esseesssesssesnseenseesseens 6
6. Internal RAM BOArdS.........ceevieriiiiieiiesieeieeciteste e stesseeseeeeesteeseaessnesssesssaesseesssesssesssessseenseenseens 7
6.1, “MC” 8 KB RAM DOAIT ..ottt sttt 7
6.2. 16 KB RAM DOAIA TYPE L..couieiiiieeiiiieiieieeeee ettt ettt sttt et se et eaeeseennens 8
6.3, 16 KB RAM DOAIA TYPE 2..ecvieeiieiiieiieiierieeseesteete et et esteesaesnseensaensaessaessaessnesssesnsesnseeseennns 9
7. HX-20 for the BUNAESWENTc.eoviiiiiiiieiiicie ettt st s eesbeebe e seesaessnesnnes 10
Replacing the CapacCItOrS........cccverieeieecieeieereesieste et ere et esteesteeseaessaessseesseesseesssesssesssessseesseesseens 10
9. Replacing the Cassette DIive Belt........ccccviciiiiiiiiieiieierierieceeee et 11
10. Character Sets and KeybDOoards...........cocuevviriiiiiiieiiieiiesiesiese ettt see e saesbe e eseessaesnnesnnes 14
L1, KCYDOAIAS TYPES.ccutiiieiiiiiiiieiieriiesiteseesteetesteebeeteesteessaessseesseanseesseessaesseesssesssenssesnseesseesseesssennses 15
12. Loading BASIC Programs via RS-232C........ccciooiiiiiiieiiriecieeeeeeee ettt 17
13. Controlling EXternal DEVICEScccvevieiiiiiiiiiieieeseeste e see et eieeseesteeseeeseresssesssessseeseesseesssennnes 17
14, Some USCTUl SUDTOULINEScveeiiieiieiieiie ettt et eraesteesteessaessnesssesssaesaesseessnennnes 18
14.1. User Defined CRaraCterS..........cocveriirciieiieiierieseeseesteeteeteesteesteesaesssesnseenseeseessasssaessnesssenns 18

14.2. Get the TIME IN SECONAS ..o 18

14.3. Functions to obtain Low and High Byte of an Integer.............ccooevevieviincincienierieeie e 19
14.4. Decoding a String with a Hexadecimal NUMDETccocoeiiriiiieieiieeecee e 19
15. Some Benchmark RESUILS.........ooiuiiiiiiiiiiie et 19
16. Writing Machine Language ROULINESc.ccoiiiiieiiiiiiiiiiicicceceereeste ettt 21
16.1. Extending the Operating SYSIEML.......cccuieicvieeriieiiieeiieeereeerteesreeesteeesveeeteeeseseesseeessseessseenes 27
16.2. Some Details about HX-20 BASIC (Microsoft BASIC)cccevieriiriiniieiieieseeeee e 34
16.2.1. The Floating Point ACCUMUIALOTc..coieirieiieiieeieeieeie ettt etre e eveeeveesveeseneeenas 34
16.2.2. Memory allocation Of ATITAYSccovieviieiiieiiieiieiie ettt eeeeeeeveeveeveesbeesenenenas 34
16.2.3. The BASIC WOTK ATCaS......ccciiiiieeiieiieiieriiesiiesre et eteeseesieesteeseaessaesnsesnsaeseesseessnessnes 35
17, USINE @ PIINTET.....eetiiiiiiie ettt ettt ettt e s bt e sat e eateeabeebeenbeesbeesaeesnees 37
18. MH-20 — A Peripheral EMUIAtOT.........c.cccviiiiiiiiciiccieeciiectecte ettt s eve v ve e eae e 37
18.1. Required Hardware for HX-20ccciiiiiiiiiiiieiieeie ettt et et stve e reeeabeeesvne e 38
18.2. Using the MH-20 SOftWATIC........cccouiiiiiiiiiie ettt e tee e sveeetee e seveesbaeesseessnaeenes 38
18.3. Display Controller EMUlationccoccverieriiriienieeiie et esieeseesee e sveesseesseesseessaessnesnnenns 39
18.3.1. Applicable BASIC Keywords and Commandscccceeveevieiieeieevieenieeereeseeseneene. 40
18.4. Disk Drive EMUIAtIONoouiiiiiiiiiii ettt s s 44
18.4.1. Technical Back@round............cceecueiiiiiiiesiieriieriesie ettt st re et 44
18.4.2. The EMUIAtION ...eoiiiieiiiieiee ettt st eaeees 45
18.4.3. Applicable BASIC Keywords and Commandscccceeveevienieeieenieenieenieesieesineeene. 45
LT T (<7 1 USRS 46
19. Map of the SYStemM RAMoooiiiiiiiiee ettt ettt e et e e s b e e e taeesbeeenbaeensneas 47
20. News and Commercial ANNOUNCEMENTScoouiiiiiiiierierie ettt et e st e 49
21. References and Further Readingccceiiiiiiiiiiiiiiiicce ettt st e e 59
1. General

The HX-20 was, and still is, a handy, portable computer with built-in printer and cassette drive — some
call it the first laptop.

The LCD screen shows a window of 4 lines of 20 characters each into a virtual screen which can (in
theory) be as large as 255 by 255 characters. In addition to text it can also display graphics at its
resolution of 120x32 pixels.

The cassette drive can be replaced by a small ROM box and you can add a larger RAM/ROM box to
the left side of the computer and you can install one ROM-chip inside the computer.

Additional devices like a barcode reader, a flexible disk drive unit and a display controller were
available in those days.

The operating system and an adapted Microsoft BASIC are stored in 32 KB of ROM, which also
contains a Monitor program. Furthermore 16 KB of RAM are installed inside the computer. The
BASIC also provides commands for graphics and for the RS-232C interface. It can also call routines
in machine code. Programs and data files can be stored in RAM and are immediately available after
switching the device on.

The serial RS-232C interface can be used to communicate with other computers or printers and
modems. A second ,,high speed interface™ was intended to be used by disk drives and display
controllers. It is not directly supported in BASIC, but can be used by programs in machine language.

The HX-20 computer was often used by sales forces, in surveying, agriculture and for mobile data
acquisition or even by the military. For these applications additional peripherals have been constructed
and can sometimes be found installed on these systems.

Because of the robust mechanical design the HX-20 is a long lasting computer — except for some
aging problems of it electronics components.

2. Power Supply

2.1. Transformer Unit

The transformer unit for the HX-20 should never be used without the built-in battery. On the on hand
side the battery acts as a buffer for actions with high power demands, for example printing or
accessing the cassette drive. Peak currents can exceed 1 A. On the other hand the battery charging load
reduces the voltage of the transformer to the required voltage of about 5 V.

The charging time of the original Ni-Cd cells (having about 1100 mAh) is roughly 8 hours. When new
cells with a higher capacity of 2000 mAh are used, the charging time grows to 14 hours. In order to
maximize battery life you should avoid overcharging the battery.

The original transformer unit is matched to the battery circuit of the HX-20. It supplies its nominal
voltage of 6V at 600 mA only when it is loaded by charging the battery. The 5.5/2.1 mm barrel plug
carries plus on the outer barrel and minus on the inner pin — most standard power supplies have the
polarity reversed. The circuit in the HX-20 has a protection diode so that no damage can occur when
the polarity is incorrect, but also no charging will take place.

You should always discharge the battery until the ,,CHARGE BATTERY !“ message appears, perform
a full charge and then disconnect the power supply again.

Measurements show that the original power supply delivers
about 9 V when unloaded, which results in an initial charging
current of 250 mA. During charging the current drops rapidly
down to 150 mA. When the battery voltage has reached its

"EPSON AC ADAPTER level of about 6V, the current has fallen to about 50 mA.
Model HOOAAG
ouTPUT w8 coomk- " | A modern regulated power supply of 6 V produced a low initial
R T current of only 50 mA which quickly drops to 20 mA. After

D NOT EARTH DOUBLE MeuLATED about two hours the current has become zero and the battery
will never be fully charged.

Therefore, a replacement power supply must deliver about 9V
and the charging current must be adjusted by inserting a

suitable resistor into the cable. The average current should

reach about 1/10 of the battery capacity (i.e. 200 mA for a
Figure 1: The original power supply 2000 mAh battery).
unit says “6 V> on the label.

Figure 2: Using a modern, stabilized 9V/4.5W power supply with an inline 2 Watt resistor of 12 Q yields an average
charging current of 200 mA and a charging time of about 12-14 hours. The cable has to be cut anyway to

reverse the polarity. Do not forget to slide the shrink tubing over the cable ends before soldering.

2.2. Replacing the Battery

e Ready-made battery packs with connectors can be found on eBay. I cannot say anything about
their quality, but I would guess that they work fine. If you have the equipment, I recommend
to charge and discharge the battery at least once using an external charger/discharger to
determine their true capacity. Alternatively you can build your own battery pack from single
NiCd cells. NiCd chemistry is preferable because the simple charging circuit (a resistor and a
protection diode) in the HX-20 is designed for these cells. The cells must not be too large —
there are small differences between so called ,,Sub-C* cells and it is better to use smaller cells
than to try to maximize the capacity. A capacity of 1000-1600 mAh is sufficient — you do not
need 2500 mAh.

e When working on the HX-20 you must avoid electrostatic charges. Use a grounded metallic or
conducting foam work surface and ground yourself using a wrist strap.

e Place the computer with the keyboard facing down on a soft mat.

e Remove all seven screws on the bottom side and put aside.

e Turn the computer over, keeping the upper and lower shells together.

e Lift the upper shell at the rear end by about 5 cm. Use the front edge as a hinge. Next you can
unlock the flexprint cable beside the battery pack by pulling the collar upwards. Pull the
ribbon cable carefully upwards, out of the connector.

e Now you can open the case completely, again using the front edge as a hinge. Careful with the
two ribbon cables close to the front edge. You can lay both halves flat on our working surface,
keeping the two ribbon cables in their connectors.

e Remove the screw in the metal plate over the battery pack and unhook the plate from the case.

e Place the new battery close to the computer — if you replace the battery within a few minutes,
memory content will be maintained.

e Pull the old battery out of the cavity and unplug the connector.

e Plug the new battery in and place it into its cavity.

o Insert the metal plate and tighten the screw lightly. In case of a home-made battery pack: be
sure that you do not create a short — the energy content of the battery pack can lead to a fire.

e Use your left hand to hold and fold the upper case back over the lower case, using the lower
edge again as a hinge. Hold the rear open and insert the flexprint cable and close the lock by
pushing the collar down, all with your right hand.

o When the case is completely closed, wiggle the lever under the microcassette drive (or ROM
box) slightly right/left to make sure it locks into its counterpart.

4

e Also make sure that the blue cloth ribbon in the printer bay is properly placed and not caught
between the case parts. Also check the proper routing of the printer paper.

o Check the proper placement of the panel with the serial connector cutouts in the rear wall.

e Before replacing the screws: test the system — if you obtain no display you might have to
reattach the flexprint cable properly.

e Ifeverything works: replace the screws and pull then hand tight.

2.3. Charging the Battery

The battery should only be recharged when the HX-20 tells you to do so. After charging, the charger
should be unplugged. Figure 3 shows a time history of the charging current obtained with a 9 V power
supply and a series resistor of 12 Q. The charging was initiated after the HX-20 signaled “CHARGE
BATTERY !” and a minimum of the current indicates the completion of the charge. A charging time
of about 12 =1 hours seems to be adequate for the 2000 mAh cells and this charger.

240

220

200

180 -

I[mA]

160

140 =

120

100

0 2 4 6 8 10 12 14 16
t[h]

Figure 3: Charging current versus time for a NiCd battery pack having a nominal capacity of 2000 mAh.

3. Variations of the ROMs
In Europe, there are at least two versions of the ROMs: they boot as BASIC V1.0 and BASIC V1.1.

The HX-20 cases also differ slightly: older ones have an opening in the bottom cover where the
auxiliary processor is installed, while the later ones do not have this additional opening. So far I
encountered four systems:

e SN 011359, BASIC V1.0: has opening over slave processor
e SN 020734, BASIC V1.1: has opening over slave processor
e SN 040576, BASIC V1.1: has no opening over slave processor
e SN 042951, BASIC V1.1: has no opening over slave processor

4. New Printer Paper

* You can use any non-thermal printer paper with a width of 57...58 mm. In order to fit the tight
space you probably have to roll-your-own from a larger roll of paper. Just take a pencil and
wind a few meters of paper around it, keeping its side edges neatly aligned, remove the pen
and you are ready to go.

5. New Printer Ribbons

e In most cases the old ribbons are dry and produce only weak printout if any. Also the foam
rollers are disintegrating after so many years. Therefore, they tend to block the motion of the
endless ribbon. Luckily, even in 2018 new cassettes are still available, because they seem to
be used in printers of some Point-Of-Sales systems.

Figure 4: This ribbon cassette was taken apart to show the internal structure and the disintegrating foam wheels.

6. Internal RAM Boards

Some HX-20 come with an internal memory expansion. Originally Epson had not planned to allow for
internal RAM extensions, but some tinkerers found out, that there was enough space inside the shell to
add a board between keyboard and motherboard. A connector could be clamped onto the solder side
pins of the external bus connector at the left edge of the case. This connection is the weak point of all
boards — malfunctions are usually resulting from poor contact and I had to replace the flat spring
connectors with strips from a “tuned precision socket” on the “mc” board to make it work again.

The issue April 1984 of the German computer magazine ,,mc* (“MicroComputer”) presented a do-it
yourself circuit layout for an 8§ KB RAM expansion board. If no ROM modules were used, two of
these ,,mc* boards could be added for the maximum of 16 KB RAM.

Similar boards were also produced by various manufacturers. These commercial boards usually came
with 16 KB of RAM or ROM, which could be selected by a setup procedure with the monitor.

6.1.“mc” 8 KB RAM board

3 L:\\:\\;i\};i\‘ ARG

Figure S: A set of two RAM boards as published in “mc” magazine. Both modules are identical and can be switched
to a starting address by a solder bridge (a dip switch in the published design). Another switch can be used
to deactivate each board if a ROM would be installed.

These boards require no special activation. One or two boards can be installed inside the HX-20,
adding 8 to 16 KB of RAM. After installation, the usual full reset sequence is applied:

e Reset (press Reset button)

o Initialise (CTRL+SHIFT+@) / (CTRL+SHIFT+§)
e Start BASIC 2)

e Input PRINT FRE(0) (Return)

The result should be 29275.

6.2. 16 KB RAM board Type 1

L]
»
v
¥
L
i
v
i

¢
v
&
’
@
¢
@
'y
.
R
e
v ¢
T
2
i

EEeascanases

i

-

178 ANVASD'S

E-d 191 LOWH @

CCCCE TS

o
.|-|.-

-y -y oy
»)
Sesesssednssn

geprift

Figure 6: RAM board Type 1 with eight 2 KB RAM chips and four additional ROM sockets.

In order to make the full RAM capacity available the following procedure has to be applied:

e Reset
e Initialize
e Start Monitor

e Input
e Input
e Input
e [Input
e Input
e Input
e Input

e Initialize
e Start BASIC
e Input

S7E
80

S3B
82

PRINT FRE(0)

Again, the result should be 29275.

(press Reset button)
(CTRL+SHIFT+@) / (CTRL+SHIFT+§)

(M

(Return) [setting $7E to $80 allows
(Return) accessing I/O address $3B below]
(Return)

(Return) [setting $3B (undocumented)
(Return) to $82 obviously enables RAM]
(Return)

(Return)

(CTRL+SHIFT+@) / (CTRL+SHIFT+§)

)

(Return)

(X EERE RN

-
-
. -
L
-
-
-«
-»
.l
-
£3
-
-
-

. P TETE L e

.
famll i J jo |
sosocise ‘

Figure 7: RAM board Type 2 produced by Steinwald with eight 2 KB RAM chips (the empty footprints under the
sticker and the supporting TTL chips can also be populated with bank switched RAM).

The activation sequence for accessing the full 32 KB RAM for this board is:

e Reset (press Reset button)

e Initialize (CTRL+SHIFT+@) / (CTRL+SHIFT+§)

e Start Monitor (1)

e Input SFFF5 (Return) [setting this byte in high address range
e Input 0 (Return) enables 32 KB RAM]

e Input - (Return)

e Input B (Return)

e Initialize (CTRL+SHIFT+@) / (CTRL+SHIFT+§)

e Start BASIC 2)

e Input PRINT FRE(O) (Return)

As above, the result should be 29275. The option ROM socket on the main board cannot be used.

The activation sequence for accessing 24 KB RAM plus the 8KB ROM socket on the mainboard is:

e Reset (press Reset button)

o Initialize (CTRL+SHIFT+@) / (CTRL+SHIFT+§)

e Start Monitor (1)

e Input SFFF5 (Return) [setting this byte in high address range
e Input 8 (Return) enables 24 KB RAM and 8KB ROM]
e Input - (Return)

e Input B (Return)

e Initialize (CTRL+SHIFT+@) / (CTRL+SHIFT+§)

e Start BASIC 2)

e Input PRINT FRE(O) (Return)

The result should be 21083. The option ROM socket can be used e.g. for a FORTH ROM. The
remaining 8 KB of RAM on the board are “wasted”.

Note: you can also use STAT ALL to examine the memory configuration.

7. HX-20 for the Bundeswehr

The German Army used the HX-20 to determine firing tables for howitzers. Devices from old military
stock appear regularly on eBay Germany, albeit at high asking prices around 100€ because these are
offered by commercial dealers and gold diggers. Keep in mind that these devices have been modified
and usually are not overhauled so that you will have to invest into a new battery as well as a
replacement of the capacitors.

TP These devices come in a modified suitcase with
e connectors for an external power supply and a reading
nach Lingener Lagerung mud oas Geval
zunschat voll sulgeladen werder

Lacezei 8 Stunden lamp. They also have a memory expansion installed,

(Handbuch St 1719}

which must be activated according to the instruction

Speicher-Akﬁvierung
hriecsten. dad aw
gt oo sheet.
zur Vertugung stent
mul Ioigende Routine engeqeden wersen

The manufacturer of these modifications was:
Steinwald Electronic GmbH
Am Sterngrund 1

6590 Marktredwitz
::"»;:" P FRE) Today the company name is:
‘9275 8 STEINWALD Datentechnik GmbH
Oskar-Loew-Str. 12
95615 Marktredwitz

Figure 8: The instructions for activation.

AUTO LIST
DATE/TIME LOAD

Figure 9: Some HX-20 come with a nice label template for tape operation.

8. Replacing the Capacitors

The HX-20 contains 14 electrolytic capacitors on its main board. These have exceeded their useful
lifespan after more than 30 years. In most cases at least some are already leaking and the electrolyte
can be found on the printed circuit board and in the gray discolored solder joints. When trying to run
the HX-20 a weak or flickering LCD screen which cannot be adjusted to full contrast (all pixels dark)
is a sign of bad capacitors. Then it is time to replace all of them. Besides a broken battery pack this
seems to be the second most common problem with the HX-20.

The replacement is simple but tedious because the holes are relatively small and the old solder is
difficult to remove. This is partially caused by the reaction with the electrolyte which seems to change
the properties of the old solder. Despite some experience gained by refurbishing three HX-20, it
usually takes me about two hours to replace all capacitors.

If available all capacitors should be of miniature size — you should revert to the standard size with a
height greater than 7.5 mm only if you cannot source the smaller ones. The standard height capacitors
must be mounted flat on the circuit board in order to fit the board into the case. In this case you have
to bend the wires by 90 degrees. On the other hand this has the advantage that you can solder from

10

both sides and better inspect the soldering joints. I found the miniature capacitors at Reichelt
Elektronik in Germany, however not for all required capacities.

The following electrolytic capacitors are required:
Cl1, C2, C3, C4, C5, C6: 10 uF/16 V4.3 mm @ x 7.5 mm

C7,C8 33 uF/16 V6.5 mm @ x 7.5 mm
C9, C10, C11, C12 47 uF/16 V6.5 mm @ x 7.5 mm
C13 100 uF/6.3 V 6.5mm@ x 7.5 mm
Cl4 1uF/16 V 6.5mm @ x 7.5 mm

A professional solder sucker of the pistol type is a good tool to remove the old solder, but in some
cases additional mechanical rework might be necessary. Be careful not to damage the through-hole
connections between upper and lower board layers.

If you discover electrolyte on the PCB or on the lower side of the old capacitor some cleaning of the
board with water and alcohol should be performed to avoid corrosion.

Be sure that the new solder flows freely through the holes so that both sides of the PCB are wetted.
Wiggling each wire slightly before removing the soldering iron helps the tin to flow through the
narrow gap. To be sure that each solder joint is nice and without stresses I even reflow each joint after
cutting the excess wires.

Figure 10: Some of the nasty culprits.

9. Replacing the Cassette Drive Belt

Most HX-20 are equipped with a micro cassette drive. It comes not as a surprise that the belt of this
drive ages and finally breaks.

It can be replaced by a rubber belt with a square cross section of 0.8%0.8 mm to 1x1 mm and a circular
inner diameter of about 50 mm. This corresponds to a width of approximately 80 mm when pressed
into a flat shape (2x80 = 7x50). The belts I used had a diameter of 49 mm and a nominal cross section
of 1x1 mm. The cross section actually measured more like 1.2x1.2 mm which worked fine, but is the
upper limit.

You need pointed tweezers, a small Phillips head screwdriver, a de-soldering tool and a soldering iron.

The parts include a few tiny M 1.4 screws, washers and spacers, which should be saved in a small
container to avoid losing them. It may be wise to take some photographs or to make some sketches
during the disassembly.

11

In order to replace the belt one has to partially dismantle the drive:

e Remove the drive box from the HX-20 by pushing the lever on the rear of the HX-20.

e Remove two screws from the bottom and take the bottom shell off.

e Remove the three 3 small screws holding the metal frame in the upper shell. Two screws
above and below the connector and one on the opposite side.

e Unscrew the fourth screw with its small brass spacer at the upper edge of the PCB which fixes
the PCB and the motor carrier in the upper shell.

Figure 11: These screws have to be removed first:
1: Four screws to remove the drive assembly from the upper shell;

2: two screws to remove the PCB from the drive frame.

e Carefully remove the upper shell. Open the hatch and slide the shell off. There is a small
internal sheet metal lever for pushing the hatch open. It can be rotated slightly around its
vertical pivot axis to get out of the way. Do not use force, just wiggle the shell a bit and slide
it off at an angle of about 45 degrees.

e Unscrew the two screws holding the PCB on the cast aluminum frame; take care of the two
washers under the screw heads as well as the small stepped spacers under the PCB.

e Note the polarity and unsolder the two wires from the tachometer cap and both motor wires.

e Carefully unfold the PCB from the mechanical assembly. The remaining wires on one side
serve as a “hinge”.

e Remove the metal bridge supporting the large drive wheel and the tension wheel (two screws).

e Unscrew the tachometer cap above the motor (2 screws plus 2 brass spacer tubes).

e Note: you might also want to inspect the three electrolytic capacitors, while you have the PCB
on the table (C1: 47 uF/6.3 V, C2: 10 uF/16 V; C3: 2.2 uF/50 V). The tantalum capacitors
seem to be less critical.

12

Figure 12: The PCB can be unfolded after unsoldering motor and tachometer cap wires and after removing the bar
across the large drive wheel and the tachometer cap. The new belt has already been installed. In the upper

left, you can also see the three electrolytic capacitors C1 to C3 on this board, which may also be replaced.

e Remove the old belt; note how the small white wheel applies tension to the belt.

o Install the new belt — it should fit the groves so that its cross section is angled at 45 degrees.

e Replace the mechanical parts.

e Turn the wheels manually to move the belt and make sure that is moves smoothly without
rubbing against other parts.

e Replace all parts, except for the plastic shell covers.

e Solder the four wires back to where they belong.

e Plug the drive assembly into the HX-20 and make a test run (WIND, FILES, BREAK).

e Ifeverything works, replace the two plastic shell parts.

e Make sure that the hatch can be opened with the lever; you may have to rotate the small
internal sheet metal lever back so that it properly engages the hatch mechanism.

And that was it — phew!

13

10. Character Sets and Keyboards

The European ROM version of the HX-20 supports different character sets than the International or
Japanese versions. For example the British pound sign is not present.

country code

0 1 2 3 4 5 6 7

35 | # # # # # ¥ # #

36 | # F ¥ F i ¥ ¥ i

64 | @ [® E E £ & E

3 91 | L L L fE A & = E

SN2~ | ~|~|8g | & |8l | @8

E 93 1 1] & g 0 5 &

194 ~ - - 0 i - 0

s 9] - | +* & | & L e

= = " = "

@ [123| £ £ £ = E El & i

124 1| i i e))) e

125 T T x ! ! I} & 2

126 | = e - U U E ” U
country SE | DE | FR | DK | SE DE FR | NO

ASCII national

Figure 13: Character sets available in the European versions of the HX-20.

The country codes 0, 1 and, 2 have identical ASCII character sets, but different keyboard assignments.

These character bitmaps are stored in the last system ROM which is mapped into the memory range E000-
FFFF. The following character bitmap patterns can be found at the given offsets into this ROM:

Offset 1BBE...1D9D: 96 characters of 5

bytes (shown below 6 bytes wide as ger_apgear on screen)

Offset 1D9E...1E5D: 32 graphics characters of 6 bytes

-Iésa

Offset 1E

. 1_EDO:_23 inteme_lgio_n_al _c_hzir_ac_tgrs_of_S_ byEes_ (shown b_elow

L

6 bytes wide as they appear on screen)

Figure 14: Character bitmaps in the system ROM of the HX-20.
Note that the given address ranges are for ROMs which show BASIC Version 1.1 on system start. The

addresses in ROMs of Version 1.0 are shifted down by 8 bytes (the data starts at offset 1BB6). These
addresses are valid for the European HX-20 models.

The character set can be switched by storing a byte between 0x10 and 0x17 (for country codes 0 to 7)
at the address 0x7F and then executing the subroutine at 0XFF6A.

10 POKE &H7F,&H16
20 EXEC &HFF6A

14

11. Keyboards Types

So far I have encountered two different types of HX-20 keyboards. The first one uses individual
mechanical key switches with flat spring contacts; the second type is built from two flexible
membrane layers which carry conductive traces. Pressing a key deflects the upper membrane locally
until it touches the lower layer. The first type is very robust and individual switches can be replaced or
cleaned. The membrane-based keyboards seem to age less well and may develop problems depending
on temperature or moisture. As the individual key mechanics are installed with melted plastic rivets,
they cannot be removed without damaging them.

I J2 9 [| | EIEL
I8 [o w Je Jr [r J2a fun [0 [0 [0 [0 [NS
I8 [['s) o) [e [|9 i [fo [m9 fms
P v [[e) Jw [e) [Jae [)

F*!Q"W‘E»E CRURCROR CRCLG T 3

A
{

[mg bat bsi oo [iFa [ian [[y [s [|[lo [ag

- - R s |
- REZRETRI R R IR VR EON Bl

Figure 15: Top view of both keyboard types: the upper one is using membranes and assemblies of grouped switches,

the lower one carries individually soldered in key switches.

15

Figure 16: Bottom view: the upper keyboard shows the black melted plastic rivets of the switch frames, the lower

shows the soldered in key switches,

il

|

Figure 17: Key ‘6’ assembly used on the membrane keyboard and close-up view of the mechanical counterparts.

16

12. Loading BASIC Programs via RS-232C

The command

| LOAD "comO: " |

can be used to load BASIC programs in text format from a second computer. If you have a Windows
system, you can use the RealTerm or Teraterm software to send such files. Without handshaking an
inter-character delay of about 10 ms is required to obtain a correct transmission at the default baud rate
of 4800.

The sender should terminate the transfer by sending a last character of CTRL-Z (0x1A). Then the LOAD
command terminates and returns to the command prompt. Otherwise one has to press the BREAK key
on the HX-20 to terminate the transfer.

13. Controlling External Devices

The serial interfaces can be used to control any device with a serial interface. If only a simple on/off
switching function is required, one can also use the “Remote” output of the HX-20. This connection is
intended to control the motor of an external cassette recorder/player. As the schematic shows, it is
completely decoupled from the HX-20 electronics by a relay and thus safe to use for external circuits.

i’ 804
202

Jc3e ZD6
0.1 HZ12F}S 0w
7.

R8 HZS
100!

0] GG

U

T

S S S S S S CMT CONN
W W w WWWwW

5 4 3 35 4

| 1 | 11

2 2 1 21

]
) 1
CASETTE (SIDE: @2)

Figure 18: The HX-20 contains a relay to control an external cassette recorder via the REMOTE connector. It can be

controlled by the MOTOR command.

The exact specification of this relay is unknown but the schematic shows a voltage of 5 V and a
5.1 Q /1 W current limiter resistor. Thus, the current drawn by the external device should never
exceed 200 mA — I recommend keeping it below 50 mA at 5 V.

A 2.5 mm mono plug with a small diameter handle is needed for the connection. The small diameter is
required for inserting the plug far enough into the HX-20. As I could only find 2.5 mm plugs with a
too large diameter of the handle, I soldered the wires and then filled its body with epoxy resin. Finally
I used a lathe to turn the diameter of the plastic handle partially down to the required diameter.
Alternatively one could also use some silicone rubber or epoxy putty to create a suitable handle.

17

14. Some Useful Subroutines

14.1. User Defined Characters

The following program fragment can be used to define characters which are assigned to the
GRAPH+0 and following keys. It has to be executed only once after a cold start.

10 REM Define NCHARS Characters

20 NCHARS=1

30 ADDR=&H0A40

40 MEMSET ADDR+6*NCHARS

50 REM Again, as MEMSET cleared all variables
60 ADDR=&H0A40

70 NCHARS=1

80 LO=ADDR AND &HOOFF

90 HI=(ADDR/256) AND &HOOFF

100 POKE &HO11E,HI

110 POKE &HO11F,LO

120 REM NCHARS Character Bitmap(s) of 6 bytes each
130 DATA 92,98,2,98,92,0

140 RESTORE 130

150 FOR N=1 TO 6*NCHARS

160 READ B

170 POKE ADDR,B

180 ADDR=ADDR+1

190 NEXT N

200 STOP

14.2. Get the Time in Seconds

By converting the return value of the TIMES$ function we can determine the seconds into the day:

210 REM Current Time in Seconds

220 T$=TIMES$

230 T#=3600.#*CDBL(VAL(MIDS$(TS$,1,2)))
240 T#=T#+60.#*CDBL(VAL(MIDS$(TS$,4,2)))
250 T#=T#+CDBL(VAL(MID$(TS$,7,2)))

260 RETURN

The current time is also maintained in the even memory locations between 0x0040 and 0x0044. It can
be read, converted and displayed by the following code fragment:

1000 REM --- TIME ---

1010 T%=0

1020 POKE &HOO7E,PEEK(&HOO7E) OR 128

1030 S%=PEEK(&H0040)

1040 M%=PEEK(&H0042)

1050 H%=PEEK(&H0044)

1060 S%=INT((S% AND &F0)/16)*10+(S% AND &HOF)
1070 M%=INT((M% AND &F0)/16)*10+(M% AND &HOF)
1080 H%=INT((H% AND &F0)/16)*10+(H% AND &HOF)
1090 IF S%=T% THEN 1030

1100 IF S%>59 THEN 1030

1110 PRINT USING '"##:##:##" ;H%,M%,S%

1120 PRINT CHR$(&H1E);

1130 T%=S%

1040 T# = 3600.#*H% + 60.#*M% + CDBL(S%)

1150 GOTO 1030

Notes:

e Line 1020 enables access to the low memory region.
18

e Line 1090 waits to update the display every second.

e Line 1100 catches a problem: the seconds value may be larger than 59, probably when the
PEEK in line 1030 occurs just when the clock is updated.

e Line 1120 moves the cursor back to overwrite the time output line.

14.3. Functions to obtain Low and High Byte of an Integer

230 DEF FNLO$ (X%)=CHR$ (X% AND &HFF)
240 DEF FNHI$(X%)=CHR$((X% AND &HFF00)/256)

14.4. Decoding a String with a Hexadecimal Number

This is a rather trivial application, but it is easily overlooked that the VAL function can do more than
parse decimal numbers.

230 HX$="0A40"
240 H%=VAL (“&H”+HX$)

15. Some Benchmark Results

The following table lists some execution times for the infamous BYTE Benchmark “Eratosthenes
Primes” [3]. The times given for these roughly comparable systems are all for 10 iterations.

Computer | Year | CPU Type and Speed | Programming Language Time
HX-20 1982 6301 @ 0.614 MHz BASIC 4050 s
HX-20 1982 6301 @ 0.614 MHz Assembler 17s
HX-20 1982 6301 @ 0.614 MHz Forth 229 s
TI1-99/4 1981 | TMS 9900 @ 3.0 MHz TI-BASIC 3960 s

PET 1977 6502 @ 1.0 MHz BASIC 3180 s

Apple][1977 6502 @ 1.02 MHz Applesoft BASIC 2806 s

HP-85 1980 | Capricorn @ 625 kHz BASIC 3084 s
HP-85 1980 | Capricorn @ 625 kHz Assembler 21s

TRS-80/11 1977 7-80 @ 1.77 MHz MBASIC 2250 s
IBM PC 1981 8088 @ 4.77 MHz BASICA 1990s

Table 1: Execution times for the BYTE benchmark.

We can clearly see that the HX-20 in BASIC mode is not exactly the fastest computer. In order to
restore the honor of this machine I wrote an assembler version of the benchmark. As I had no
experience with the 6800 family and the Hitachi 6301, the code is surely not optimized but the results
should give a good estimate of what is possible.

; The infamous BYTE Benchmark Eratosthenes Sieve.

; For the Epson HX/20 with Hitachi HS 6301 CPU.

; This assembly Tanguage program performs 10 loops

; of the Sieve benchmark.

; The number of primes is saved in variable "C" at

; address OxOADA. The correct result is 1899 (0x076B).

; Enter the hex bytes starting at address 0xA40
; using the Monitor.

; Start with

; SOA40

19

Addr
0A40
0A42

0A45
0A48
0A4B
0A4D

0A50
0A53
0A56

0A59
0A5C
OASF
0A62
0AG65
0A67

0AGA
0A6D
0A70

0A73
0A74
0A77

0A79
0A7C
OA7F
0A80
0A82

0A84
0A87
0A8A
0A8D

0A90
0A93

0A96
0A99

Bytes
860A
B70AD4

Ccooo1
FDOAD9
8601

B70ADD

CCOAEQ
FDOADE
BDOABF

CC0000
FDOAD5
CCFFFF
FDOAD7
8600

B70ADD

FCOAD7
C30001
FDOAD?7

18
8C1FFF
273C

CCOAEQ
F30AD7
18
A600
27E6

FCOAD7
F30AD7
C30003
FDOAD9

F30AD7
FDOADB

FCOAD5
C30001

When the code up to address 0AD3 has been entered,
it can be executed from 0A40 until the PC reaches
OABE (Label STOP):

GOA40,0ABE

Assembled from the ASM source with the a09 assembler:
a09 -oHO01 sieve.asm -Lsieve.lst

References:
BYTE Magazine, January 1983

: Created 12/2018 Martin Hepperle

OPT HO1 ; Hitachi 6301
ORG $0A40
LDAA #$0A ; 10 times
STAA REP ; repeat count
; set FLAG(0:8190)=1
AGAIN LDD #$0001 ; step size=1
STD P
LDAA #$01 ; set flag
STAA F
; starting address
LDD #FLAG ; load address of FLAG, use as...
STD FPTR ; ...starting address for FILL
JSR FILL ; set *FPTR, *(FPTR+1l), ... to F=1
; preparation of loop
LDD #$0000 ; C=0
STD C ;
LDD #S$FFFF ; I=-1 for starting loop at O
STD I
LDAA #3500 ; clear flag
STAA F
; I-Toop from 0 to 8190
NEXT LDD I
ADDD #$%$00001
STD I ; I=I+1
; compare I against 8191
XGDX ; D->X
CPX #$1FFF
BEQ FINI ; end of Toop
; FLAG[I] == 07
LDD #FLAG ; load address of FLAG
ADDD I ; address of FLAG[I]
XGDX ; D->X
LDAA $00,X ; get value from FLAG[I]
BEQ NEXT ; if already ZERO: continue I Tloop
LDD I ; I
ADDD I ; I+1
ADDD #$3 ; I+I+3
STD P ; P=I+I+3
ADDD I ; K=P+I
STD K
LDD C ; get C

ADDD #$00001 ; (=C+1

20

0A9C FDOADS5S STD C ; update count of primes

; K > 81907
0A9F FEOADB LDX K
0AA2 8CI1FFE CPX #$1FFE ; 8190
0AAS5 2EC3 BGT NEXT ; continue with Toop

; for J=K to 8190 step P
; starting address

0AA7 CCOAEO LDD #FLAG ; load address of FLAG[K]...
0OAAA F30ADB ADDD K ; ...and use as...
0OAAD FDOADE STD FPTR ; ...starting address for FILL
0OABO BDOABF JSR FILL ; set *(FPTR+K), *(FPTR+K+P),
0AB3 20B5 BRA NEXT
; all done, repeat?
0AB5 B60AD4 FINI LDAA REP ; get repeat count
0AB8 4A DECA ; decrement
0AB9 B70AD4 STAA REP ; store repeat count
0OABC 2687 BNE AGAIN ; not yet finished
OABE 39 STOP RTS ; finally
; i1l FLAG array from *BPTR with F step P

0ABF FEOADE FILL LDX FPTR ; address in BPTR = FLAG[J]
0AC2 8C2ADE LOOP CPX #FLGE ; address of Tast byte in FLAG
0AC5 2EOC BGT DONE ; beyond end of FLAG[]: leave loop
0AC7 B60ADD LDAA F ; flag value to set (byte)
0ACA A700 STAA $00,X ; insert value into FLAG[IJ]
OACC 18 XGDX ; X<—>D
OACD F30AD9 ADDD P ; now D has X+P
0ADO 18 XGDX ; bring X+P back to X
0OAD1 20EF BRA LOOP ; again
0AD3 39 DONE RTS ; done
0AD4 00 REP FCB $00
0AD5 0000 C FDB $0000 ; prime count, 1899d = 076Bh
0AD7 0000 I FDB $0000 ; loop count
0AD9 0000 P FDB $0000 ; step size
OADB 0000 K FDB $0000 ; starting index
OADD 00 F FCB $00 ; value to set
OADE 0000 FPTR FDB $0000 ; pointer to array element

FLAG ; flag array
0AEO 00000000000000 FILL $00,8190 ; fill with zero

OAE7 00000000000000

2ADE 00 FLGE FCB $00 ; last byte in FLAG array
END

16. Writing Machine Language Routines

When I ran the BYTE benchmark "Eratosthenes Sieve" in BASIC, I was disappointed by the low
performance. Experience from the HP-85 hinted that writing the code in machine language (using an
assembler) could accelerate the program by a huge factor. Therefore, I started looking for ways to
write and use assembler programs for the HX-20.

21

The BASIC Reference Manual contains a brief explanation how to call machine language subroutines
with the EXEC and USR functions. It also explains the structure of BASIC variables so that these can be
accessed by machine language programs.

This BASIC interface is rather limited, though: the EXEC function does not take any parameters but the
USR function can take one parameter. Officially, the USR function always returns the same type as its
parameter, i.e. if the parameter is an integer, the function return type must also be integer (but there is
a way to change this by placing the result in the FPACC memory location and by adapting the type
information in 0x0085-0x0086). If more than one parameter has to be transferred, these parameters
could be copied to predefined global memory locations so that they can be accessed from BASIC as
well as from the machine language program. Another option to handle multiple or mixed parameter
types is to wrap the parameters into the bytes of a string and write the USR function to split this string
parameter into its components. Finally for multiple numeric parameters an array could be used.

In Figure 19 I show the register set of the 6301 in comparison to the well-known 6800 and 6809. It can
be seen that assembler code for the 6800 should be fairly easy to translate for the 6301. The 6809 has
two additional 16-bit registers making a translation less straightforward.

For more information about programming the Hitachi 6301 one should consult the data sheet of the
6301 and books about the 6800 processor family. I could not find any specific book about the 6301,
though.

6802 68000
+ %'R"" /

-DMA J
/ihmer 6803 LR
6800 + clock 6801 6301 all new opcodes 6809
NMOS TROM NMOS CMOS +moare NMOS
+ serial
~———16 bit—— ~———16 bit—— ~———16 bit——
~—8 bit———=—8 bit— ~—8 bit———=—8 bit— ~—8 bit———=—8 bit—
Accumulator [A [B | }7776 | B } =D LA] _B =D
Index X X
index
Program Counter
Stack Palnter
User Stack Pointer
Condition Code CCR CCR
Direct Page

HX-20

Figure 19: Registers of the 6301 and the related 6800 processor family.

An introduction into the 6301 CPU and its assembler language mnemonics is given in the book by
Balkan [4]. It even contains a listing of an assembler written in BASIC and running on the HX-20 or
other machines with Microsoft BASIC.

Unfortunately, the listing seems to have been typeset manually so that it contains about a dozen typos
as well as one major bug. I used this assembler for my first exploratory steps (after fixing the typos
and the bug and running it on a CP/M emulator with MBASIC). However, due to memory limitations
of the 16 KB HX-20, this assembler is rather minimalistic.

Therefore, I searched again and found the A09 assembler which had also been extended to cover the
6301 opcodes. This assembler comes in plain “C” and I compiled and executed it on a Windows

22

system. It can produce listings as well as binary and hexadecimal output. After fixing one bug in its
6301 opcode table it worked fine (by now, the fix should be integrated into the official release).

In order to load the assembled code into the HX-20 I wrote a small Python script which reads the
listing file produced by A09 and transforms the code into a BASIC loader program, complete with
MEMSET, DATA and the required POKE commands.

The transfer of this BASIC program to the HX-20 is accomplished by the RealTerm program at 4800
baud with an inter-character delay of 5...10 ms.

Thus, my process is

e Connect both machines with the proper RS-232C cable.
e On the PC:
o assemble the code with AQ9,
o convert the output into a BASIC loader program using LST2BAS. py,
o set the communication parameters to 4800 baud, 8 bits, no parity, no handshaking and
1 stop bit,
e On the HX-20
o execute LOAD "COMO: (68N1E)" to prepare for loading the program into the HX-20.
e Onthe PC:
o use RealTerm to send the BASIC program to the HX-20,
o wait until the program has been transferred.
e onthe HX-20
o inspect and execute the BASIC program,
o this last step will actually write the machine code into memory.

After the machine code has been poked into memory, it stays there as long as no MEMSET command
reduces the amount of reserved memory or another machine code program overwrites this memory.
This means that the BASIC loader program has to be run only once. On the other hand, it does not hurt
to run it again, if you want to be sure that the memory has not been altered. After loading, the machine
code can also be saved to and read from the microcassette using the SAVEM respectively the LOADM
commands. Unfortunately, it seems to be impossible to save and restore binary programs via the RS-
232C interface.

If the machine code sequence in the DATA statements would become very large, one could modify the
loader program to read the DATA from the RS-232C port or from tape. So far [wrote only small
programs so that this was not necessary and I found it more convenient to keep the machine code
together with the loader in a single program.

The Python script:

This is a simple tool for converting the Tisting produced by the
A09 assembler into Epson HX-20 BASIC statements.

The resulting BASIC program loads the machine code into memory.
The code can then be executed by an EXEC statement or by
calling a USR function.

In the DATA statement starting addresses for a range of opcodes
or data are identifiable by a length of four characters.
ATl opcodes or data bytes are two characters long.

import sys

def go (s):
For Epson HX-20.
Convert 6301 assembler Tisting file "s" into BASIC.

grab all (listing files are small)
fIn = open(s);

ss = fIn.readlines();

fIn.close();

nLines = Ten(ss);

values have to be adapted
RETURN 1is placed
nStop = 1070

n = 10

print (str(n)+' REM --- Epson HX-20 ---")

n = n+l10

print (str(n)+' REM --- M. Hepperle 2018 ---')

n = n+10

print (str(n)+' REM --- adjust BASIC starting address')

skip MEMSET Tine
n = n+10
nMemSet = n

n = n+10

print (str(n)+' REM --- Toad the code bytes')
n = n+10

print (str(n)+' GOSUB 1010')

n = n+l10

print (str(n)+' REM --- define the function')
n = n+10

nDefFn = n

n = n+10

print (str(n)+' REM --- application example')

n = n+10

print (str(n)+' OPEN "O",#1,"COMO: (68N1D)"")
n = n+10

#print (str(n)+' PRINT USR1(CHR$(0)+CHR$(32)+CHR$(0)+CHR$(64)+"Hello World")")
print (str(n)+' PRINT USR1("Hello World")")
n = n+10

n = n+l0

print (str(n)+' REM --- if no parameters, then use:')
n = n+10

print (str(n)+' REM EXEC &HOA40')

n = n+10

print (str(n)+' END')

n = 1000
print (str(n)+' REM --- Hex Code Loader ---'")

n = n+10
print (str(n)+' N%=0")

n = n+l10
nLoop = n
print (str(n)+' READ C$')

n = n+10
nReturn = n+50
print (str(n)+' IF C$="DONE" THEN '+str(nReturn))

n = n+l10
print (str(n)+"' N%=N%+1 : IF N%=8 THEN PRINT "."; : N%=0')

new address, DATA MUST start with an address!
n = n+10

24

print (str(n)+' C%=VAL("&H"+C$)")

new address, DATA MUST start with an address!
n = n+10
print (str(n)+' IF LEN(C$)=4 THEN A%=C% : GOTO '+str(nLoop))

new opcode
n = n+l0
print (str(n)+' POKE A%,C% : A%=A%+1 : GOTO '+str(nLoop))

nStop
n = n+10
if n != nReturn:

print ('*** ERROR: increase nReturn by '+str(n-nReturn))
print (str(n)+' RETURN')

Tine=0;
address = 0
startAddress = 65536
endAddress = 0

sLine =

while Tine < nLines:
1 = ss[1line].replace("\n","")

this is the End
if 1.startswith('SYMBOL TABLE'):
break

continuation Tine has no blank in the first column
if 1[0:1] !'= ' ':
#{
skip
Tine = Tine+l
continue
#}

addr = 1[1:5].stripQ

if Ten(addr) == 4:
#{
try:
#{
addrDec = int(addr,16)

if addrDec < startAddress:

#{

startAddress = addrDec
#}
if addrDec > endAddress:
#{

endAddress = addrDec
#}
if addrDec !'= address:
#{

a step in addresses -

output new start address

address = addrDec

sLine = sLine + addr + ','
#1}

opcodes = 1[6:20].stripQ
i=0

while i < Ten(opcodes):

#{
sLine = slLine + opcodes[i:i+2] + ','
1= 42

update high water mark

25

if address > endAddress:
#{

endAddress = address
#1}

next free address or start of BASIC for MEMSET
address = address+1

if Ten(sLine)>57:

#{
n = n+l
print (str(n) + ' DATA ' + sLine[0:Ten(sLine)-1])
sLine = "'
#}
#}
#1
except:
#{
addrDec = 0
#}
#}
Tine = line+l
if 1ine > 50000:
#{
break
#}

flush DATA Tine
sLine = sLine + 'DONE'

n = n+tl

print (str(n) + ' DATA ' + sLine[0O:Ten(sLine)])

insert MEMSET Tine above
print (str(nMemSet) + ' MEMSET &H' + hex(endAddress+1).upper()[2:]1)
print (str(nDefFn)+' DEFUSR1=&H'+hex(startAddress) .upper()[2:])

terminate transfer with AZ
print ('\032")

if 1==1:
print

print (

print

print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print

('Comments:"')

('The binary code is loaded into RAM between &H' +

hex(startAddress) .upper(Q[2:]+' and &H' + hex(endAddress) .upper(Q[2:]+'.")
('Thus we need to use MEMSET to shift the start of the BASIC')

('program and data area up:')

(" MEMSET &H' + hex(endAddress+1) .upper()[2:])

"

('If the code requires no parameters, you can execute it with')

(" EXEC &H' + hex(startAddress).upper(Q[2:]1)

"

('If it takes one parameter, define it as a USR function:')

(' DEFUSR1=&H' + hex(startAddress).upper()[2:])

('"(Note that USR functions can have only one parameter.')

(" Multiple parameters can often be packed into a string or array)')
('Call the function with its parameter and grab the return value:')

(" I%=USR1(...parameter...)")

"

('The generic Hex Code loader at the end of the program reads DATA')
('statements containing either four or two digit hexadecimal numbers.')
('If the number has 4 digits it is interpreted as the "current address".')
('Any following data bytes will be Toaded starting at this address.')

('If the number has two digits, it is a data byte which will be loaded')
('"to the "current address" and the address is incremented by one.')

('This scheme allows Toading data to arbitrary addresses, if desired.')
('Reading the data stream is terminated by the data item DONE.')

"

('"If nothing changes, the data has to be read only once, so that')

('you could add a test for e.g. the first and last bytes and skip loading.')
('The assembler code should usually end with an RTS instruction (&H39).')

if _name__ == "_main__":

if len(sys.argv)>1:
basePath = "D:\\HP\\Epson HX-20\\ASM\\"
basePath A
fileName = sys.argv[1]
go(basePath + fileName)

else:
print ('Usage: LST2BAS Tisting.lIst')

16.1. Extending the Operating System

The BASIC Operating System of the HX-20 is astonishingly flexible and can be extended in various
ways. One option is to add new devices. The core system already supports the devices

KYBD: keyboard,

SCRN: screen,

LPTO: internal printer,

CASO: internal cassette (optional),
CAS1: external cassette,

PACO: ROM cartridge (optional),
COMO: RS232C,

BRCD: barcode reader (optional),

“A:,B:,C:,D: flexible disk units (optional).

The system allows up to 16 devices. Most devices of these can be accessed sequentially with standard
BASIC statements like OPEN, CLOSE, PRINT, INPUT, EOF, LOF and so on.

For each device a device driver is installed in a device table, which is a list of addresses of “Device
Control Blocks” (DCB). Each DCB has a prescribed structure and contains the name of the device as
well as addresses to a set of required functions. It is possible to add devices by installing a device
driver somewhere in RAM and adding the address of its DCB to the table. Before removing the driver,
you should uninstall it, by zeroing the address entry in the device table.

The DCB has the following structure:

; Device Control Block
DCB: FCB "BUFO" ; 4 character name
FCB $30 ; I/0 modes: $01: read-only, $20: write-only,
$30: r/w
FDB OPENDEV ; OPEN routine
FDB CLOSEDEV ; CLOSE routine
FDB READDEV ; READ routine
FDB WRITEDEV ; WRITE routine
FDB EOFDEV ; EOF routine
FDB LOFDEV ; LOF routine
DEVBUF: FCB $00, $00,%$00,%00 ; for device purposes
COLPOS: FCB $00 ; current column position (returned by BASIC
POS function)
MAXCOL: FCB $00 ; max. column: $00: infinite
PRTTAB: FCB $14 ; print zone width: step of “,” separated
PRINT output
LSTTAB: FCB $00 ; last print zone on line
WIDTH: FCB $80 ; WIDTH support: $00: yes, $80: no

Following the name of the device it contains some flags and the addresses of 6 worker routines. These
routines are called when the device is opened or closed, when bytes are read and/or written to the
device and when the state of the device is inquired. I/O is performed on a sequential byte-by-byte

27

basis, so this approach is not the fastest way to read or write large amounts of data. But all devices can
be used easily with the standard I/O functions of BASIC.

The following example implements a simple device which provides a small ring buffer of 64 bytes.
You can write data to the buffer and later read it back. It is rather useless, but serves as an example of
anew device. It is installed with a small BASIC loader program and thus becomes available for all
BASIC LOGINS. I decided to place it just below BASIC into RAM starting at address $0A40. This
was the most convenient option for me.

To generate such a driver you

e write the assembler code, starting with the DCB and implementing the required functions,
e assemble the code with a suitable assembler (I use a09),
e translate the binary bytes into BASIC DATA statements and append it to the BASIC loader
program (I use a python script to read the listing produced by a09),
e run the BASIC loader program, which
o moves the starting point of BASIC up to leave room for the new device code,
o loads the DCB and the code into the free space,
o installs the address of the DCB in the device table.

After the driver has been installed, it can be used until it is removed from the device table by replacing
the address of its DCB in the device table with null bytes. This removal is also implemented in the
example BASIC program.

When the driver has been loaded once, it would also be possible to SAVEM it to a disk or tape file.
Later, a BASIC program would only need the correct MEMSET and a LOADM command would
replace the slow HEX loader. The MEMSET command is important to keep the allocated space from
being overwritten by BASIC (there are also other but more complex ways to reserve space for such a
driver).

; a09 device.asm -ldevice.lst
; python LST2BAS.py device.lst > device.bas

; HX-20: Hitachi 6301
OPT HO1
OPT NCL

; insert below BASIC into the address range $0A40...$0AF7
ORG $0A40

A device driver skeleton for the Epson HX-20

Implements a simple device "BUF0:" which stores
bytes written to it in a ring buffer.
Reading from the device returns the bytes written until
the buffer is empty.
The LOF() function returns the amount of data currently in the buffer.
The EOF() function returns 0 if there is something in the buffer,
-1 otherwise.

Example

10 REM --- Epson HX-20 -—-

20 REM --- M. Hepperle 2024 ---

30 REM --- adjust BASIC starting address

40 MEMSET &HAFS8;

28

50 REM --- Toad the device "BUFQ"
60 GOSUB 350

70 REM --- application example
80 OPEN "O",#1,"BUFO:"

90 PRINT #1,"123";

100 PRINT "POS(1)=";P0OS(1)

110 PRINT #1,"ABC"

120 PRINT #1,"abc";

130 PRINT "POS(1)=";POS(1)

140 CLOSE #1

150 ON ERROR GOTO 240

160 OPEN "I",#1,"BUFO:"

170 PRINT "Buffer size=";LOF(1)
180 FOR I%=1 TO 100

190 C$=INPUTS$(1,#1)

200 1IF ASC(C$)=13 THEN C$="CR"
210 1IF ASC(C$)=10 THEN C$="LF"
220 PRINT "/";C$;

230 NEXT I%

240 CLOSE #1

250 PRINT"/"

260 PRINT "UNLINK BUFO:"

270 INPUT "Y/N";YN$

280 IF YN$<>"Y" THEN GOTO 330
290 IF A%=0 THEN GOTO 330

300 POKE A%,0

310 POKE A%+1,0

320 PRINT "BUFO: at";A%;'"removed"

330 END

340 REM --- Hex Code Loader ---

350 N%=0

360 READ C$

380 IF C$="DONE" THEN 430

390 N%=N%+1 : IF N%=8 THEN PRINT "."; : N%=0

400 C%=VAL("&H"+C$)

410 IF LEN(C$)=4 THEN A%=C% : GOTO 360

420 POKE A%,C% : A%=A%+1 : GOTO 360

430 PRINT

440 REM 1install device control block in DCB table

450 DCBTAB%=&H0657

460 FOR A%=DCBTAB% TO DCBTAB%+30 STEP 2

470 C%=PEEK(A%) *256+PEEK(A%+1)

480 IF C%=&HA40 THEN GOTO 540

490 IF C%=&H000 THEN GOTO 520

500 NEXT A%

510 IF A%>DCBTAB%+28 THEN GOTO 560 : REM ERROR

520 POKE A%,&HOA : REM HIGH

530 POKE A%+1,&H40 : REM LOW

540 PRINT "BUFO: at";A%;'"added" : REM remember A% for later removal

550 RETURN

560 PRINT "Cannot install BUFO:"

570 STOP

580 DATA 0A40,42,55,46,30,30,0A,5E,0A,5F,0A,60,0A,7C,0A,A0,0A,AC,00

590 DATA 00,00,00,00,00,14,00,80,0A,B8,0A,B8,39,39,FE,0A,5A,BC,0A,5C
600 DATA 27,0F,A6,00,08,8C,0A,F8,26,03,CE,OA,B8,FF,0A,5A,39,86,FF,97
610 DATA F5,39,5F,D7,F5,FE,0A,5C,A7,00,08,8C,0A,F8,26,03,CE,OA,B8,FF
620 DATA OA,5C,81,0D,27,08,81,0A,27,04,7C,0A,55,39,7F,0A,55,39,5F,FE
630 DATA 0A,5A,BC,0A,5C,27,01,39,5A,39,FC,0A,5C,B3,0A,5A,2A,03,C3,00
640 DATA 40,39,DONE

650 REM --- END
; EOFLG EQU $00F8 ; EOF flag (error in Epson manual)
EOFLG EQU $00F5 ; EOF flag (J. Wald and system ROM AOOO-BFFF)

; Device Control Block
DCB: FCB "BUFO" ; 4 character name

29

FCB $30
FDB OPENDEV
FDB CLOSEDEV
FDB READDEV
FDB WRITEDEV
FDB EOFDEV
FDB LOFDEV
DEVBUF: FCB $00, $00, $00, $00
COLPOS: FCB $00
MAXCOL: FCB $00
PRTTAB: FCB $14
LSTTAB: FCB $00
WIDTH: FCB $80
; max. 64 bytes
READPT FDB BUFFER
WRITPT FDB BUFFER

; called by OPEN
; OPEN "I",#1,"BUF:"
; OPEN "O",#1,"BUF:"
OPENDEV
; ho action
RTS

; called by CLOSE
; CLOSE #1
CLOSEDEV
; ho action
RTS

called e.g. by INPUTS
C$=INPUT$(n,#1)

T e wn wn wa owa

EADDEV

LDX READPT
CPX WRITPT
BEQ READ_EOF
LDAA , X
INX
CPX #BUFEND
BNE READ_1
; wrap
LDX #BUFFER

READ_1
STX READPT
RTS

READ_EOF
LDAA #$FF

STAA EOFLG
RTS
called e.g. by PRINT#
PRINT# 1,"ABC"
(A) byte to write

RITEDEV
CLRB

&F oo wo oo ©o oc

read one byte from device
return byte in (A) or set EOFLAG to $FF on EOF

write one byte to device

I/0 mode: $01: r, $20: w, $30: r/w

OPEN routine

CLOSE routine

READ routine

WRITE routine

EOF routine

LOF routine

for device purposes

current column position see BASIC POS(#)
max. column: $00: infinite

print zone width: step of “,” PRINT output
last print zone on line

WIDTH support: $00: yes, $80: no

initialize read and write addresses
initially buffer 1is empty

get read address

; compare with write position

buffer is empty

; get byte from buffer

increment pointer
get address

; o.k.

back to start

; for next read

EOF: $FF

; not at EOF: $00

30

STAB EOFLG 3

LDX WRITPT ; get current write address
STAA , X ; store byte

INX

CPX #BUFEND ; get address

BNE WRITE_1

; buffer overflow: wrap

LDX #BUFFER ; get start address
WRITE_1
STX WRITPT ; for next write
; increment or reset POS
CMPA #$0D
BEQ ZERPOS
CMPA #$0A
BEQ ZERPOS
INCPOS 1INC COLPOS ; increment column index
RTS
ZERPOS CLR COLPOS ; reset column 1index
RTS

; called e.g. by EOF(1)

EOFDEV
CLRB ; nhot at EOF
LDX READPT ; get read address
CPX WRITPT ; compare with write position
BEQ EOF ; buffer is empty
RTS
EOF
DECB ; return $FF EOF flag
RTS

; called e.g. by LOF(1)
; return # of bytes in buffer

wrapping example/test case with 7 byte buffer

W-R 1is negative, must add buffer Tength

; [.ABCDE.]. --- ABCDE not wrapped
; [1234567]8 E=end, behind buffer W write pointer
; [BR....W]E B=begin, buffer R read pointer
; W>R: LOF = (W-R) = (7-2) =5
; [E..ABCD]. --- ABCDE wrapped around
; [1234567]8
; [BW.R...JE
; R>W: LOF = (E-R)+(W-B) = (8-4)+(2-1) = 4 + 1 =5
; = (W-R)+(E-B) = (2-4)+(8-1) = -2 + 7 =5
LOFDEV
LDD WRITPT ; get read address
SUBD READPT
BPL LOF_1 ; positive: no wrap
ADDD #(BUFEND-BUFFER) ; wrap
LOF_1
RTS

; placing the I/0 buffer at the end allows omitting these bytes from Toading

BUFFER FILL $00,64 ; buffer of 64 bytes

BUFEND ; behind buffer

MEMSET $* ; same as BUFEND, first free address, for MEMSET
END

31

A similar example is “STAT:”, a device which counts the occurrence of each character sent to it. After
installing is, one can LIST "STAT:" a program to it and later sequentially read the number of times
each character occurred in the listing. For this purpose the device maintains a buffer of 256 16-bit
counters, which can be read byte by byte. Thus, opening it for input and reading the first two bytes
(high, low) yields the count of CHR$ (0) sent to the device, CHR$ (1) is returned in the next two bytes
and so on until the last bytes 511 and 512 define the number of occurrences of CHR$(255). Each OPEN
for output resets the counting array, an OPEN for input resets the reading index to the start of he array.

The example application just sends 3 A’s, 2 B’s and one C as well as a CHR$(13) and CHR$ (10) at the
end of the PRINT statement. After running it once, you can directly call RUN 150 e.g. after listing a
program with LIST "STAT:".

10
20
21
22
23
24
25
26
27
28
29
30
40
50
60
70
80
90
100
110
120
130
140
145
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

--- Epson HX-20 ===

--- M. Hepperle 2024 ---

Installs a device "STAT:".
Writing to it counts the

number of occurrances of

each character code (0...255).
Reading returns 256%*2 bytes
(high,Tow) which represent the
accumulated number of each character.
One can use LIST "STAT:" to count
how often each character occurs.
--- adjust BASIC starting address

MEMSET &HCB3

REM

--- load the code bytes

GOSUB 350

REM

--- 1install driver

GOSUB 450

REM

--- application example

OPEN "O",#1,"STAT:"

FOR I%=1 TO 150
PRINT#1,CHR$(0)+"AAABBC"

NEXT I%

CLOSE #1

REM --- entry e.g. after LIST "STAT:"
PRINT "Finding maximum..."

MX=

0

OPEN "I",#1,"STAT:"
FOR I%=0 TO 255
H$=INPUT$(1,#1) : L$=INPUTS$(1,#1)

Y=

ASC(H$) *256+ASC(L$)

IF Y>MX THEN MX=Y
NEXT I%
CLOSE #1
GCLS
OPEN "I",#1,"STAT:"
FOR I%=0 TO 127
H$=INPUT$(1,#1) : L$=INPUTS$(1,#1)
Y%=31* (1- C(ASC(H$) *256+ASC(L$)) /MX)
LINE(I%,31)-(1%,Y%) ,PSET
NEXT I%
CLOSE #1
SOUND 33,2

C$=
END

INPUTS (1)

REM --- Hex Code Loader ---

N%=

0

READ C$

IF

C$="DONE" THEN 430

32

390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
214
214
214
214
214
214

N%=N%+1 : IF N%=8 THEN PRINT "."; : N%=0
C%=VAL("&H"+C$)

IF LEN(C$)=4 THEN A%=C% : GOTO 370
POKE A%,C% : A%=A%+1 : GOTO 370
PRINT

RETURN

REM --- Device Installer ---
DCBTAB%=&H0657

FOR A%=DCBTAB% TO DCBTAB%+30 STEP 2
C%=PEEK (A%) *256+PEEK (A%+1)

IF C%=&HO0A40 THEN GOTO 550

IF C%=&HO0000 THEN GOTO 520

NEXT A%

IF A%>DCBTAB%+28 THEN GOTO 570

POKE A%,&HOA : REM HIGH

POKE A%+1,&H40 : REM LOW

PRINT "STAT: @";A%;"installed"

RETURN

PRINT "Cannot install STAT:"

STOP

1 DATA 0A40,53,54,41,54,30,0A,5A,0A,78,0A,79,0A,8F,0A,9F,0A,AB,00

2 DATA 00,00,00,00,00,14,00,80,B6,06,8A,81,10,27,10,CE,0A,B1,86,FF
3 DATA 6F,00,6F,01,08,08,4A,81,FF,26,F5,CE,0A,B1,FF,0C,B1,39,39,7F
4 DATA 00,F5,FE,0C,B1,8C,0C,B1,27,07,A6,00,08,FF,0C,B1,39,7A,00,F5
5 DATA 39,36,33,4F,05,C3,0A,B1,18,EC,00,F3,0A,AF,ED, 00,39, 5F, FE,0C

6 DATA B1,8C,0C,B1,27,01,39,5A,39,CC,00,02,39,00,01,DONE

Ass

embler source code:

10
20
21
22
23
24
25
26
27
28
29
30
40
50
60
70
80
90
100
110
120
130
140
145
150
160
170
180
190
200
210
220
230
240
250
260
270
280

REM --- Epson HX-20 -—-
REM --- M. Hepperle 2018 ---
REM Installs a device "STAT:".
REM Writing to it counts the
REM number of occurrances of
REM each character code (0...255).
REM Reading returns 256%2 bytes
REM (high,Tow) which represent the
REM accumulated number of each character.
REM One can use LIST "STAT:" to count
REM how often each character occurs.
REM --- adjust BASIC starting address
MEMSET &HCB3
REM --- load the code bytes
GOSUB 350
REM --- 1install driver
GOSUB 450
REM --- application example
OPEN "O",#1,"STAT:"
FOR I%=1 TO 300
PRINT#1,CHR$ (0)+"AAABBC"
NEXT I%
CLOSE #1
REM --- entry e.g. after LIST "STAT:"
PRINT "Finding maximum..."
MX=0
OPEN "I",#1,"STAT:"
FOR I%=0 TO 255
H$=INPUTS$(1,#1) : L$S=INPUTS$(1,#1)
Y=ASC(H$) *256+ASC(L$)
IF Y>MX THEN MX=Y
NEXT I%
CLOSE #1
GCLS
OPEN "I",#1,"STAT:"
FOR I%=0 TO 127
H$=INPUT$(1,#1) : L$=INPUTS$(1,#1)
Y%=31*(1- (ASC(H$) *256+ASC(L$)) /MX)

35

290 LINE(I%,31)-(I%,Y%),PSET
300 NEXT I%

310 CLOSE #1

320 SOUND 33,2

330 C$=INPUTS$(D)

340 END

350 REM --- Hex Code Loader ---

360 N%=0

370 READ C$

380 IF C$="DONE" THEN 430

390 N%=N%+1 : IF N%=8 THEN PRINT "."; : N%=0

400 C%=VAL("&H"+C$)

410 IF LEN(C$)=4 THEN A%=C% : GOTO 370

420 POKE A%,C% : A%=A%+1 : GOTO 370

430 PRINT

440 RETURN

450 REM --- Device Installer ---

460 DCBTAB%=&H0657

470 FOR A%=DCBTAB% TO DCBTAB%+30 STEP 2

480 C%=PEEK(A%)*256+PEEK(A%+1)

490 IF C%=&HOA40 THEN GOTO 550

500 IF C%=&HO0000 THEN GOTO 520

510 NEXT A%

520 IF A%>DCBTAB%+28 THEN GOTO 570

530 POKE A%,&HOA : REM HIGH

540 POKE A%+1,&H40 : REM LOW

550 PRINT "STAT: @";A%;"installed"

560 RETURN

570 PRINT "Cannot install STAT:"

580 STOP

2141 DATA 0A40,53,54,41,54,30,0A,5A,0A,78,0A,79,0A,8F,0A,9F,0A,AB,00
2142 DATA 00,00,00,00,00,14,00,80,B6,06,8A,81,10,27,10,CE,0A,B1,86,FF
2143 DATA 6F,00,6F,01,08,08,4A,81,FF,26,F5,CE,0A,B1,FF,0C,B1,39,39,7F
2144 DATA 00,F5,FE,0C,B1,8C,0C,B1,27,07,A6,00,08,FF,0C,B1,39,7A,00,F5
2145 DATA 39,36,33,4F,05,C3,0A,B1,18,EC,00,F3,0A,AF,ED,00,39,5F,FE,0C
2146 DATA B1,8C,0C,B1,27,01,39,5A,39,CC,00,02,39,00,01,DONE

16.2. Some Details about HX-20 BASIC (Microsoft BASIC)

16.2.1. The Floating Point Accumulator

Microsoft BASIC maintains a so called “floating point accumulator” (FPACC). This is a memory area
used for intermediate results when working with 16-bit integer as well as single and double floating
point numbers. It is also used to transfer a numeric parameter to a USR function. Its length is 8 bytes to
hold a double precision floating point number. The arrangement of the bytes can be found in the
BASIC reference manual. The location of the FPACC is at address 0x00D5 in RAM.

16.2.2. Memory allocation of Arrays

Allocation of a one-dimensional INTEGER array:

DIM N%(5)
A%=VARPTR (N%(0))

The VARPTR function returns the address of the first array element (0). In memory this is followed the
next element (1).

Allocation of a two-dimensional INTEGER array:

| DIM N%(5,6)

34

| A%=VARPTR(N%(0,0)) |

The VARPTR function returns the address of the first array element (0,0). In memory this is followed
the next element (1,0), i.e. the first index is incremented first.

Note: the examples above use the default OPTION BASE O setting. [f OPTION BASE 1 is used, the first
element is (1), respectively (1,1).

16.2.3. The BASIC Work Areas

Work Area (1)

Example memory dump:
00000080 00 22 00 00 00 04 00 00 00 00 00 08 6C 08 69 1D .".......... 1.4.
0085-0086: <———> TypeInfo for data in FPACC
00000090 7E 1D 80 00 00 00 00 OA 00 00 7D 65 OB OC 1D 7C ~......... }e...|
009C-009D: <---> HeadPointer:

address of address-
field of first 1ine
009E-009F: <---> StringSpace:
address of
string space

000000A0 1D 84 1D 84 7D 89 7E 51 7E 51 7E 51 07 DA 07 DA}.~Q~Q~Q....
00A0-00Al:<---> NextFree? address of next free entry in string space
00A2-00A3: <---> NextFree? address of next free entry in string space

000000BO 07 DO 00 00 10 8D 00 00 OB OB 00 00 01 1D 7E 1D ~.

00B8-00B9: <---> DataPointer: address of separator
of next Tine for READ
00BA-00BB: <---> TailPointer: address of last

Tine (after program was run)
000000C0O 82 00 00 00 1D 84 1D 80 00 00 00 00 00 00 04 BDvvvuunnn.
000000D0O 00 00 00 00 00 88 00 00 D8 00 00 OO0 00 00 00 01 ...v'vvvvvvnnnnnn

00D5-00DC: Fromooos FPACC ------- > Floating Point
Accumulator
000000EO 7E 51 00 00 00 00 E6 00 00 00 00 00 00 00 10 76 ~Q. ... vvuuunn.. v

000000F0 1D 7D 08 5D 00 00 OE 00 5F 00 B6 10 9B 7E B3 D8 .}.]...._....~..

Work Area (2)

Example memory dump:

000005B0 00 00 00 88 DF 00 00 00 88 DF 00 00 00 00 00 00cuouvuunnn
000005C0 00 00 00 00 00 00 OO 00 OO0 00 OO0 00 00 00 00 00evvuvuunnn
000005D0 00 00 00 00 00 00 OO0 00 B4 F3 00 00 00 00 00 00cuouvuunnn
000005E0 00 00 7E 8C 70 7E 8C 70 7E 8C 70 7E A6 71 7E A6 ..~.p~.p~.p~.Q~.
<---0--> <---1--> <---2--> <---3--> <---- 39 error handlers
000005F0 71 7E A6 71 7E A6 71 7E A6 71 7E A6 71 7E A6 71 gq~.g~.Q~.Q~.0~.q
00000600 7E A6 71 7E A6 71 7E A6 71 39 A6 71 39 A6 71 39 ~.q~.0g~.q9.99.q9
00000610 A6 71 39 A6 71 39 A6 71 39 A6 71 39 A6 71 39 A6 .99.99.99.99.99.
00000620 71 39 A6 71 39 A6 71 39 A6 71 39 A6 71 39 A6 71 99.99.99.99.99.9
00000630 39 A6 71 39 A6 71 39 A6 71 39 A6 71 39 A6 71 39 9.99.99.99.99.99
00000640 A6 71 39 A6 71 39 A6 71 39 A6 71 7E 88 DF 7E 88 .99.99.99.g~..~.
00000650 DF 7E 88 DF 7E 88 DF 06 9C 06 B6 06 DO 06 EA 07 .~..~.....c.....

00000660 04 07 1E 07 38 00 00 00 OO0 OO OO0 OO OO OO OO OO8.....cuvn..
-> <-5-> <-6-> <-7-> <-8-> <-9-> <-0-> <-1-> <-

00000670

00000680
00000690
069C:
000006A0
000006B0
06B6:
000006C0O
000006D0
06D0:
000006E0
06EA:
000006F0
00000700
0704:
00000710
071E:
00000720

00000730
0738:
00000740
00000750
00000760
00000770
00000780
00000790
000007A0
000007B0O
000007CO
000007D0
000007EO
000007F0
00000800
00000810
00000820
00000830
00000840
00000850
00000860
00000870
00000880
00000890
000008A0
000008B0O
08B5-
000008C0

-08CE:

08CF-

000008D0
000008EO

-08E2:

000008F0
00000900
00000910
00000920
00000930
00000940
00000950
00000960
00000970
00000980
00000990
000009A0
000009B0

00 00 00
-> <-3->
00 00 00
38 4E 31

10 B3 E4
E4 00 00

E4 B7 30
43 4F 4D

0D B1 28

8D AD DA
00 01 00

70 AE 7C

43 30 10
-—

28 00 00

24 B3 E4
OE 00 00
20 20 20
20 20 20
00 44 2C
46 2C 46
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
09 08 38
DE 41 D9
EF 7F 02
00 00 00
00 00 00
00 00 00
00 00 00
65 1D 7C
8D 00 00

04 04 04

70 8C 70
70 8C 70

20 20 20
00 00 00
06 DO 00
26 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00

43

E4
8D

00

04 04 04
type code
04 04 04 04

8N1E..... p..KYBD
Name of DO
...... 1.0.......

Name of D2
..(.C....@CAS00.
Name of D3

Name of D4
p-|...1....... PA
Name of D5

.D,BD,FF,70,39,F
F,FF,00.........

8,81 .
A.C.T.". oo,
...... Xoo.o A%, .
............. ~Q.
elieenni Ju..

10 addresses of
USR0-9 functions
in BASIC ROM

p-p.p.p.p.p.p.p.

000009CO 00 00 00 00 00 00 00 OO0 00 00 00 OO0 00 00 00 OO0ovvuunn.
000009D0O 00 00 00 00 00 00 00 OO OO0 00 00 00 00 00 00 OO0cvvunnn.
000009EO 00 00 00 00 00 00 00 00O 00 00 00 00 00 00 00 OO0cvvunnn.
000009F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0cvvunnn.
00000A00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0ovvunnn.
00000A10 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 OO0ovvunnn.
00000A20 00 00 00 00 00 00 00 FF 00 14 04 08 00 00 00 00cvuun..
00000A30 00 00 01 00 00 39 00 00 01 00 00 01 01 00 00 O1 Sloonoonooos

17. Using a Printer

An Epson P-40 printer (or any other printer with serial interface) can easily be connected to the RS-
232C port of the HX-20. However, as the buffer of the P-40 is only 2 bytes, data transfer will only
work properly if you wire the cable for hardware handshaking. This requires the connection of the
printer handshake signal DTR to the HX-20 input signal DSR on pin 6 of the DIN connector.

You can then use commands like

|LIST “COMO: (68N2B)”

to list a program on a printer set to 4800 baud and 8 data bits, no parity and two stop bits

Similarly, the statement

| OPEN “0”,#1,”COMO: (68N2B)” |

can be used in a program to open a file for output with subsequent PRINT #1 statements. When done
with printing, you should close the serial port with a CLOSE #1 statement.

18. MH-20 — A Peripheral Emulator

The “MH-20" software runs on a PC and mimics two different peripherals for the HX-20:

e adisplay controller for text and graphics output and,
e adisk drive units with four disk drives (which equals two TF-20 drives).

While the display function is readily available with the HX-20, the disk drive emulation requires the
setting of the switch SW4 to the ON position. This switch is accessible from the bottom of the HX-20.
See the “Operating Manual”, page 2-1.

DC-20 TF-20 TF-20

5{) (()

MH-20

(ll
(0

OO0

HX-20

Figure 20: Schematic of the HX-20 with the MH-20 software.

37

18.1. Required Hardware for HX-20

The MH-20 program listens on the serial RS-232C port of your computer which must be connected to
the high speed serial port of the HX-20. The emulator sets the serial port on the PC side to 38400
baud, 8 data bits, 1 stop bit, no parity and no handshaking. The wiring of a cable connecting the HX-
20 with a standard IBM-AT-style D-SUB 9 pin male connector is shown in Figure 21. The common
USB-RS-232C converter cables usually come with a matching male D-SUB connector and can be

used.
RS-232C
. DB9 - female
Serial view on solder cups
DIN - 5-pin
view on solder cups i RO TXD GND

RXD -3 o 1-GND

PIN -5 4 - POUT

2-TXD

6

GND 1<>5 GND
TXD 2—>2 RXD
RXD 3<-3 TXD
High-Speed Cable
(for connecting to a PC)

Figure 21: Cable to connect to HX-20 to a PC running the MH-20 screen and disk emulator. Only 3 wires are needed.

18.2. Using the MH-20 Software

MH-20 is written in Java and therefore is executable on many common platforms. You need a Java
Runtime Environment (JRE) of Version 1.8 or higher. For the serial communication it relies on the
jSSC (Java Simple Serial Connector) serial port communication library. This library includes system
dependent hardware drivers for Linux, Mac OS/X, Solaris and Windows 32 as well as Windows 64.

You can start the simulator from a command line and supply these optional command line arguments:
e -port PORT

default: PORT=COMI1

The device name of your serial port. You must use the proper syntax for your operating
system, e.g. for higher port numbers under Windows: *“/..//COM38”, omit any trailing
colon.

-width WIDTH

The width of the window in character columns. Default: WIDTH=80

-height HEIGHT
The height of the window in character rows. Default: HEIGHT=48
e -diskconfig TYPE

The arrangement of disk drives. Use TYPE=0 for HX-20 (you can use the emulator also
for the PX-8 and for this application other configurations are available)

-debug

Activates output of debug information.

38

In a Windows command prompt you can enter a command line for the HX-20 like

| java -jar MH-20-Display-Controller.jar -port /..//COM38 -width 80 -height 24 |

Of course you can and should wrap this long command into a .cmd script file.

Under Linux you might have the problem that the serial port is usually not accessible by normal users.
You have to be a super-user to work with it. Two options to handle this problem are listed below.

o Create a shell script (text file) e.g. “mh20dc.sh” with the desired command line options. Port
access may require administrator rights. Therefore, you can use sudo which asks for the
superuser password.

#!/bin/sh
sudo java -jar MH-20-Display-Controller.jar -port /dev/ttySO

or

e You can also make your script file “mh20dc.sh” set the superuser-bit by itself:

| sudo chmod +s mh20.sh

Then your script would need no sudo command, but just the command line

#!/bin/sh
java -jar MH-20-Display-Controller.jar -port /dev/ttySO

In both cases you can run the program by executing your script

./mh20.sh

18.3. Display Controller Emulation

The MH-20 program mimics an external display controller similar to the ones which were available in
its day. One such device was the Oval HO-80 from Oval Ltd., a British company, which delivered its
video output in form of UHF or PAL signals. Its screen was able to show 32x16 characters or 128x64
pixels in 4 colors or 128x96 pixels in monochrome.

My goal was not a faithful representation of this device (which I even don’t own) and its limitations
but mainly to allow for easier reading and editing of programs for the HX-20. Editing programs on the
small built-in LCD screen is not really fun — at least for me.

The HX-20 display system supports two operating modes: text mode and graphics mode. Both are
partially implemented in the MH-20 software. The text mode offers all cursor movement and editing
functions. The special graphics characters are also displayed, but no attempt has been made to
implement user defined characters. I even don’t know whether the original display controller was able
to handle those.

After the text mode worked sufficiently well for practical application I added some of the graphics
functions. These allow clearing the screen (GCLS), drawing lines (LINE) and setting points (PSET) and
inquiring the color of pixels (POINT).

Like with the original display controller, graphics and text screen are handled as exclusive entities.
The MH-20 is either in text or in graphics mode - you cannot mix graphics and text.

However, to allow writing text in graphics mode I implemented an additional command to write a
string of characters to the graphics screen. However, this requires the usage of a machine code
subroutine to send out the proper data frames.

39

18.3.1. Applicable BASIC Keywords and Commands

Selecting the Output Device

Purpose

SCREEN 1,0

Send subsequent fext output to the display controller.

SCREEN 0,1 Send subsequent graphics output to the display controller.

SCREEN 0,0 Send all subsequent output to the LCD display.
The SCREEN command also selects the character set according to the
current system settings.

Text Mode Purpose

CLS Clear the screen.

PRINT Print output to the screen.

LIST List the current program on the screen.

WIDTH width,height

Set the dimensions of the text screen in character cells.

POS

Return the horizontal position x of the cursor.

CRSLIN

Return the vertical position y of the cursor.

LOCATE x,y,cursor

Place the cursor at (x,y), e.g. for a following PRINT statement.

Graphics Mode

Purpose

GCLS

Clear the graphics screen.

COLOR fore,back,set

Select foreground and background color for the given color set.

PSET (x,y),index

Set the pixel at (x,y) with the given color [0...3].

PSET (x,y)

Set the pixel at (x,y) with the current foreground color.

PRESET (x,y)

Set the pixel at (x,y) with the current background color.

LINE (x1,yl)-(x2,y2),PSET

Draw a line from (x1,y1) to (x2,y2) with the foreground color.

LINE (x1,yl)-(x2,y2),PRESET

Draw a line from (x1,y1) to (x2,y2) with the background color.

POINT (x,y)

Return the color index of the pixel at (x,y). [0...3, 10...13]

Figure 22: MH-20 in text mode after a SCREEN 1,0 and a LIST command.

The caption bar shows the dimensions in character cells as well as in pixels.

40

Some differences from the Epson Specifications:

Only a subset of the possible commands has been implemented. The program may handle
unknown commands ungracefully.

Text lines extending over multiple screen lines are not supported. Each line must fit on one
line.

In graphics mode, all dimensions have been doubled for better visibility — i.e. a line is drawn
two pixels wide. The screen dimensions in pixels as shown in the title bar reflect this scaling
and show the available coordinate space.

The screen size can be considerably larger than that of the original display controller. Its size
was limited to a text display of 16x32 characters respectively resolutions of 128x96 for
monochrome graphics or 128x64 for color graphics.

The size of the graphics screen is directly linked to the text screen size and cannot be changed.
No movable window is implemented as this does not make too much sense on this larger
screen.

Both color sets of 4 colors each have been implemented as per specification. As they are only
vaguely specified the default background color “green” has been made dark to have the
default text color “yellow” stand out sufficiently. It is possible to use both color sets on the
same screen, which was probably not possible on the original hardware.

The POINT function returns 0...3 for colors in the color set 0, and 10...13 for colors from set
2. This allows distinguishing between the two color sets. The original hardware probably only
returned values within 0...3.

A context menu (right mouse button) allows copying the contents of the display to the
clipboard. Depending on the current display mode, text and/or bitmap format are available.

Figure 23: Result of running a simple plot programs.

Left: The same program runs on the internal LCD. For the external screen only a SCREEN 0,1
command and individual scaling factors for the x- and y-direction have been added.
Right: The two color palettes (0 and 1) with 4 colors each, selected by using the COLOR command. The first

bar (color index 0) represents the default background color of each color set.

41

Figure 24: In contrast to the original Display Controller the software emulator can also display characters if a special

machine language subroutine is used.

The example shown in Figure 24 uses a machine language subroutine to send a special data packet to
the MH-20 Display Controller. The parameters of this subroutine are the X, and Y coordinates as well
as the string to output (up to 32 characters). These are packed into a string because USR functions only
allow for one parameter.

; a09 outchar.asm -loutchar.lst
; python LST2BAS.py outchar.lst > outchar.bas

OPT HO1

ORG $0A40
BUFLEN EQU 32 ; max. string Tlength
SERSND EQU $FF70 ; operating system function
; BASIC floating point accumulator to return result
FPTYP EQU $0085 ; 2 bytes: type of # in FPACC
FPACC EQU $00D5 ; floating point accumulator

Epson HX-20

USR function for sending a string with Teading
16-bit x-y coordinates via serial interface.
The string may have up to BUFLEN characters.
Returns the length of the output string

(minus the 4 leading bytes)

Usage:

DEFUSR1=&H0A40

DEFFNLO$ (X%)=CHR$ (X% AND 255)

DEFFNHI$ (X%)=CHRS$ ((X%\256) AND 255)

: X=25 : Y=50

M$=FNHI$ (X)+FNLOS (X)+FNHIS$(Y)+FNLOS(Y)
L=USR1(M$+"HeTllo World"™)

X points to string descriptor:
0,X: length of string, must be >4
1,X: address of string

0A40 8103 CMPA #$03 ; do we have a string?
0A42 2653 BNE 00PS ; no: leave

0A44 E600 LDAB 0,X ; length of string -> B
0A46 5A DECB ; minus 1 = data length
0A47 F70A9E STAB CNT ; store data length

42

0A4A
0A4C
0A4E
0A50
0A52

0A54
0A56
0A58
0A59
0A5B

O0A5D
OASF
0A61
0AG64
0A66
0A69
0A6B
OAGE
0A70

0A73
0A74
0A77
0A7A

0A7B
0A7D
O0A7E
0A81
0A83
0A84
0A85
0A88
0A8A
0A8D
OA8E

0A90
0A91

0A94
0A97

0A98

0A9A
0A9B
0A9C
0A9D
OA9E

O0A9F
0AA1
0AA3
0AAA
0AB1
0AB8
OABF

Co03
2F49
C120
2F02
€620

9602
9785
4F

97D7
D7D8

EEO1
A600
B70A9F
A601
B70AAQ
A602
B70AAl
A603
B70AA2

37
CCOAA3
FDOA98
33

A604
3C
FEOA98
A700
38

08
7COA99
2803
7COA98
5A
26EB

4F
CEOA9A

BDFF70
39

FFFF

00
30
20
EE
03

FFFF
FFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFF

LENOK:

NEXT :

NOVER

OOPS:
CPTR:

PACKET:
OP:
DID:
SID:
FCN:
CNT:

DATA:
XPNT:
YPNT

CHAR:

SUBB
BLE
CMPB
BLE
LDAB

LDAA
STAA
CLRA
STAA
STAB
LDX

LDAA
STAA
LDAA
STAA
LDAA
STAA
LDAA
STAA

PSHB
LDD
STD
PULB

#$03
00PS
#BUFLEN
LENOK
#BUFLEN

$02
FPTYP

FPACC+2
FPACC+3

1,X
0,X
XPNT
1,X
XPNT+1
2,X
YPNT
3,X
YPNT+1

#CHAR
CPTR

; minus X,Y

less than one character?
up to BUFLEN chars

min(N, BUFLEN)

return data type: integer
type of # in FPACC

store integer in FPACC+2,3
high byte = 0

Tow byte Tlength

address of string -> X

high byte of X

; Tow byte

high byte of Y

; Tow byte

; starting address of CHAR
; store pointer

Tength of string -> B

; address of source char is (X+4)
; address of destination is in CPTR

LDAA
PSHX
LDX
STAA
PULX
INX
INC
BVC
INC
DECB
BNE

CLRA
LDX
FCB
JSR
RTS

FCB

FCB
FCB
FCB
FCB
FCB

FCB
FCB
FILL

END

4,X

CPTR
0,X

CPTR+1
NOVER
CPTR

NEXT

#PACKET
$00
SERSND

$FF, $FF

$00
$30
$20
$EE
$03

$FF, $FF
$FF, $FF

$FF,BUFLEN

get next character A=*(X+4)
save source address
destination address X=CPTR
store character code *CPTR=A

increment source address
increment Tow byte of target
V=0: no overflow

else: increment high byte
decrement character count
next character

A=0: send a packet
address of PACKET

DEBUG: force HX-20 Trap!
send packet

pointer to current CHAR

0: send

destination ID
source ID

my own function code
data length - 1

; the actual payload
; X
;Y

; buffer[BUFLEN]

43

The corresponding BASIC loader and test program as created by the python script LST2BAS . py is:

10 REM --- Epson HX-20 s==

20 REM --- String Output to MH-20 ---
30 REM --- M. Hepperle 2018 ---

40 GOSUB 70

50 PRINT USR1(CHR$(0)+CHR$(32)+CHR$(0)+CHR$(64)+"Hello World")

60 STOP

70 REM --- Hex Code Loader ---

80 N%=0

90 MEMSET &HAC3

100 READ C$

110 IF C$="DONE" THEN 160

120 N%=N%+1 : IF N%=8 THEN PRINT "."; : N%=0

130 C%=VAL("&H"+C$)

140 IF LEN(C$)=4 THEN A%=C% : GOTO 100

150 POKE A%,C% : A%=A%+1 : GOTO 100

160 PRINT

170 DEFUSR1=&H0A40

180 RETURN

190 DATA 0A40,81,03,26,53,E6,00,5A,F7,0A,9E,C0,03,2F,49,C1,20,2F,02
191 DATA C6,20,96,02,97,85,4F,97,D7,D7,D8,EE,01,A6,00,B7,0A,9F,A6,01
192 DATA B7,0A,A0,A6,02,B7,0A,A1,A6,03,B7,0A,A2,37,CC,0A,A3,FD,0A,98
193 DATA 33,A6,04,3C,FE,0A,98,A7,00,38,08,7C,0A,99,28,03,7C,0A,98, 5A
194 DATA 26,EB,4F,CE,0A,9A,BD,FF,70,39,FF,FF,00,30,20,EE,03,FF,FF,FF
195 DATA FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
196 DATA FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,DONE

18.4. Disk Drive Emulation

The second function of the MH-20 program is the emulation of disk drive units. This gives you four
simulated floppy disk drives.

Note that a tooltip with a short directory listing is shown when you hover the mouse pointer over one
of the drive images.

18.4.1. Technical Background

The Epson TF-20 dual 5-%4" disk drive unit is actually a small computer which runs a variant of the
CP/M operating system. It communicates with the HX-20 over a “high-speed” serial connection at
38400 baud using the EPSP Protocol developed by Epson. This protocol underwent some extensions
for later Epson computers and is only sparingly documented.

When the HX-20 boots up, it first asks the TF-20 for a short boot loader program. After this has been
received, it asks for a longer machine language program containing the code to extend the BASIC of

the HX-20. This program implements the additional or modified keywords and commands to support
the disk drive.

The extension code is loaded into the memory of the HX-20. Its actual location depends on the size of
the RAM installed in the HX-20. Therefore, the HX-20 also asks the TF-20 to relocate the code
according to its memory configuration. Thus, the TF-20 has to recalculate the affected addresses in the
code before sending it to the HX-20. The MH-20 emulator supports all logical disk functions as
required for operation of the HX-20.

44

18.4.2. The Emulation

The MH-20 emulator emulates two floppy units, i.e. a total of four disk drives. These are mapped to
four directories:

DISK A

DISK B

DISK C

DISK D

Each directory contains individual files.

While the original floppy disks have a limited capacity, the capacity of the mapped drives is only
limited by the mass storage capacity of the host computer. Of course it makes sense to limit the
number of files in each directory to a reasonable number.

For this purpose each file is directly represented by a disk file on the host computer - no disk image
files are used. Therefore, physical disk functions, like formatting and sector reading/writing, do not
make much sense and produce no result.

The main applications of the disk emulation are

e saving and loading programs,
e creating, writing and, reading of data files.

18.4.3. Applicable BASIC Keywords and Commands

Keyword Purpose

CLOSE close file(s)

CvIi, CvD, CVS convert a string to numeric data

DSKF return free space on disk (has no effect, always returns 320 KB)
DSKI$ direct input of one record (has no effect, returns "Read Error")
DSKO$ direct output of one record (has no effect, returns "Disk write protected")
EOF return end of file code

FIELD define fields for the record buffer used by random access file
FILES display disk directory

FILNUM define number of FCBs in advance

FRMAT format a disk (has no effect)

GET read one record from random access file

INPUT# read data item from sequential access file

INPUTS$ read a string from a sequential access file

KILL delete a file

LINE INPUT# read line of characters from sequential access file

LIST output a program listing to a file

LOAD load a program from a file

LOADM load a machine language program from a file

LoC return the current record number of a file

45

LOF return the largest record number of a file
LSET store data in file buffer for random access file
MERGE merge a program into current program
MKI$, MKD$, MKS$ convert numeric data to a string
NAME rename a file
OPEN open a file
PRINT# print data to a sequential access file
PRINT# USING print formatted data to a sequential access file
PUT write one random record from file
RESET enable replacement of disk
RSET store data in file buffer for random access file
RUN load and execute a program from disk
SAVE save a program to a file in binary or ASCII format
SAVEM save memory range to a file
SYSGEN create a new system disk (has no effect)
WHILE. ..WEND conditional loop statement
Note that
e record numbers are 0-based
e cachrecord is 128 bytes long
e the FIELD statement defines the structure of a complete record
e the PUT and GET statements write resp. read a complete record

18.5. Credits
Copyright notice for the serial library used in MH-20:

7

*

jSSC (Java Simple Serial Connector) - serial port communication Tlibrary.

* © Alexey Sokolov (scream3r), 2010-2014.

* This file is part of jSSC.

jSSC is free software: you can redistribute it and/or modify

* it under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

jSSC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU Lesser General Public License for more details.

* You should have received a copy of the GNU Lesser General Public License

along with jSSC. If not, see <http://www.gnu.org/licenses/>.

If you use jSSC in public project you can inform me about this by e-mail,
of course if you want it.

e-mail: scream3r.org@gmail.com

* web-site: http://scream3r.org | http://code.google.com/p/java-simple-serial-connector/

46

19. Map of the System RAM

The HX-20 system uses the lower part of its RAM for storage of various system variables. When
writing assembler programs it is useful to have a complete picture of the RAM usage. The following
Table was compiled from the Technical Manual.

FFFF
ROM 1:1/0 routines

8192 Bytes
E000
DFFF

ROM 2: Menu, Monitor

8192 Bytes
C000
BFFF

ROM 3 BASIC 1

8192 Bytes
A000
9FFF

ROM 4:BASIC 2

8192 Bytes
8000
IFFF

ROM 5: option ROM
8192 Bytes
optional
6000 memory board(s)
S5FFF RAM for user programs
16348 Bytes
not used

8192 Bytes
4000
3FFF

RAM for user programs

13760 Bytes RAM for BASIC

0A40 RAM for BASIC 128Bytes
| RAM for BASIC 1424 Bytes RAM for 1/0 routines 50 Bytes

0000 RAM for I/O buffers 944Bytes /~ 1/Onorts 78 Bvtes

Figure 25: Global memory map of the HX-20 system.

Usage Addr. Len. Name Usage Addr. Len. Name
Clock I/O ports 40 1 seconds Vectors 11E 2 user defined chars.
41 1 alarm seconds 120 2 BRKADR
42 1 minutes 122 2 MENADR MENU
43 1 alarm minutes 124 2 PAUADR BREAK
44 1 hours 126 2 CT3ADR PF3
45 1 alarm hours 128 2 CT3ADR PF4
46 1 day 12A 2 CT3ADR PF5
47 1 date 12C 2 CT3ADR PF5rmbadr
48 1 month 12E 2 PRMCNT
49 1 year 130 2 WAKADR
4A 1 control register A 132 2 POFADR
4B 1 control register B 134 2 BSWTAD
4C 1 control register C 136 2 BSWBAD
4D 1 control register D 138 2 no name
Clock 4E 50 RTC RAM Menu and link tables 13A 2 BITMPO
Basic interpreter 80 128 13C 2 BITMP1
Interrupt processing 100 3 INTCLK 13E 2 LNKTBL
103 3 INTEXT Keyboard 140 1 KSTKSZ
106 3 TRAP 141 1 KICNT1
109 3 IRQ1 SCI 142 1 KICNT2
10C 3 IRQ1 TOF 143 2 KICNTM
10F 3 IRQ1 OCF 145 10 NEWKTB
112 3 IRQ1 ICF 14F 10 OLDKTB
115 3 IRQ1 == INTCLK 159 10 CHKKTB
118 3 SW1 163 2 KYISAD
11B 3 NMI 165 1 KYISFL

47

Usage Addr. Len. Name Usage Addr. Len. Name
166 1 KYISCN 205 1 MSMNCM
167 1 KYISPN 206 1 MSTOFCN
168 1 STKCNT 207 1 MSPLMD
169 1 KEYMOD ROM Cartridge 208 1 PRMSTS
16A 1 ONKFLG 209 2 STAPRS
16B 1 KPRFLG 20B 2 FTADRS
16C 1 KEYRPT 20D 2 EDADRS
16D 2 CKEYRD Binary Dump/Load 20F 2 DLTPAD
16F 18 KYISTK 211 2 DLBTAD
181 8 CHRSTK 213 2 DLOPAD
189 7 no name 215 2 DLSTAD

Microprinter 190 6 CHRPTN 217 1 DLDVID
196 1 COLCNT 218 1 DLSTS
197 24 CHRDAT 219 2 DLDVIX

RS 232C 1AF 2 RSBAUD RESERVED 21B 5 reserved
1B1 2 RSCRC LCD 220 80 PSBUF
1B3 2 RSBCC 270 2 SCRTOP
1BS 1 RSBITL 272 2 SCRBOT
1B6 1 RSMODS 274 2 DISTOP
1B7 1 RSSTSR 276 1 VSCRX
1B8 2 RSBFAD 277 1 VSCRY
1BA 2 RSBFBT 278 1 CURX
1BC 2 RSBFSZ 279 1 CURY
IBE 2 RSINP 27A 1 LRMODE
1CO 2 RSOUP 27B 1 UDMOD
1C2 2 RSDCNT 27C 1 CURMRG
High Speed Serial 1C4 1 SRFMT 27D 1 SSPEED
1C5 1 SRDDEV 27E 1 DISPX
1C6 1 SRSDEV 27F 1 DISPY
1C7 1 SRFNC 280 1 DISSTS
1C8 1 SRSIZ 281 5 no name
1C9 1 SRACKC 286 6 CHRPTN
1CA 1 SRTRCN Screen work area 28C 20 no name
ICB 1 SRTIMO Monitor work area 2A0 48 no name
1CC 1 SRETMO External Cass. Headers ~ 2D0 1 CHBLID
1D 1 SRATMO D1 2 CHBLNO
1CE 1 SRMODE D3 1 CHBLBU
1CF 1 STETDL 2D4 4 CID
1DO 1 SRBLCN 2D8 8 CFNAME
IDL 1 SRERMD 280 8 CFTYPE
1D2 1 SRRVFL JE8 1 CRTYPE
ID3 2 SREIX 289 1 CBMODE
External Cassette 1D5 1 CSMOD 2EA 5 CBLNG
1D6 2 CSBLNO 2EF 5 no name
D8 2 CSBCC 2F4 6 CDATE
1DA 2 CSBLSZ 2FA 6 CTIME
IDC 1 CSSTP 300 6 no name
IDD 1 CSSTS 306 2 CVOLN
1DE 2 CSBFAD 308 8 CSYSN
1EO 2 CSBFRT 310 20 no name
1E2 2 CSBFSZ Internal Cass. Headers 324 1 MHBLID
1E4 2 CSBFIP 325 2 MHBLNO
IE6 2 CSBFOP 271 MHBLBU
1E8 2 CSBFCM 328 4 MID
1EA 1 CSRDTR 32C 8 MENAME
IEB 1 CSRDCN 334 8 MFTYPE
Internal Cassette 1EC 1 MSMOD 33C 1 MRTYPE
IED 2 MSGLNO 33D 1 MBMODE
IEF 2 MSBCC 335 MBLNG
1F1 2 MSBLSZ 343 5 no name
1F3 1 MSBSTP 348 6 MDATE
1F4 1 MSSTS 34E 6 MTIME
1F5 2 MSBFAD 354 6 no name
1F7 2 MSBFBT 35A) MVOLN
1F9 2 MSBFSZ 35C 3 CSYSN
IFB 2 MSBFIP 364 20 no name
IFD 2 MSBFOP 378 260 CASBUF
;F) 1; % l}\/l/lssl?{ l;)(ill\f Total RAM used 1148 bytes
202 1 MSRDCN
203 2 MSCNTR

Table 2:

Detailed RAM usage by the HX-20 operating system.

20. News and Commercial Announcements

Note: The following figures contain company and product names which are reproduced here only for
historic documentation and archival purposes. These companies may not exist anymore and the
products mentioned are surely not available anymore.

Ak MEH Sk
CTRLAT lnitialize
1 BRElE

MICRO CASSETTE DRIVE
® Fec

RETURN

SHIFT GRPH
p— .

49

Which do you think is the
more sophisgcated computer?

Epson.

The big differences between the Epson HX-20 Notebook
Computer (on the left) and the Apple Computer (on the
right) are: 1) the HX-20 doesn't need a power cord, 2) the
HX-20 weighs only about four pounds, and 3) the HX-20
costs a lot less money.

The Epson HX-20 Notebook Computer has a full-size

can get them at all.

All of which makes the take-it-anywhere HX-20 perfect
for business executives, salespeople, students, kids —
anyone who's looking for an affordable, practical way into
computing.

Portable. Powerful. Affordable. Sophisticated. The extra-

keyboard, a built-in LCD screen, a built-in printer, 48K of
combined RAM and ROM memory, and an internal power
supply that will keep it running for over 50 hours. So you can
do computing and word processing virtually anyplace you
happen to be. Whereas, with the Apple Computer, you can
only go as far as an extension cord will take you.

And on the HX-20, you get communications interfaces,
upper and lower case letters, five program areas, a full 68
keys including an integrated numeric key pad, an internal
clock/calendar, and the screen and printer. Standard. On
the Apple, you pay something extra for each feature — if you

ordinary HX-20 Notebook
Computer. Find out just how
extraordinary. Call (800)
421-5426, in California (213)
539-9140 for your nearest
Epson computer dealer.

EPSON

EPSON AMERICA, INC.

Circle 177 on Inquiry card. BYTE March 1983 99

ROSE BOWL SCOREBOARD SNAFU DONE WITH PORTABLE COMPUTER
During January's Rose Bowl, a scoreboard prank by two CalTech students was made possible by two
computers and radio modems. The students, who are now being prosecuted for trespassing, used an
Epson HX-20 notebook-size portable computer with an RF modem to tap into an 8086 breadboard
they'd attached between the scoreboard and its operators. The students put several messages on the
scoreboard’s scratch-pad area and finally changed the names of the teams to show CalTech trouncing
rival MIT, instead of UCLA beating lllinocis. The students later held a seminar called “Packet RF Control
of Remote Digital Displays.”

BYTE April 1984 9

50

ERFPS0ON

Hand-Held-Computer HX-20
Der Computer, der mit auf die Reise geht

Netzunabhdngig
DIN A 4 groB.

Leicht. 1.600 Gramm
mcx. RAM 32 KB. ROM 40 KB
MICROSOFT-BASIC

LCD-Display

Mini-Drucker mit GraphikicGhigkeit.
Schreibmaschinentastatur.

EPSON

Epson-Technologie. Der Exrfolg besserer Ideen.

Epson Deutschland GmbH Am Seestern 24 - 4000 Dusseldor‘ Telefon: (0211) 5861001

Figure 26: Can these eyes lie? The dark color scheme of the HX-20 seems to have been composed specifically for this

advertisement.

51

o S
i

Never before has somuchbeen available
from so little, to so many.

M-

Never before in the history of modem LCD screen and a dot matrix microprinter. A micro-

computers has there been available a totally cassette facility is available as an optional extra.

portable machine with the ability to cope with A complete computer that will either

so many demands, to so many people, in so stand on its own or could be the obvious

many different business areas. extension to your existing system. erso™
Epson, with over 20 years experience in More and more people are finding out

designing and manufacturing high quality just how big the small compact HX-20 is.

printers, have produced the HX-20, a Why don't you find out for yourself — you

precision machine with its own rechargeable owe it to your business.
power supply that can be used for just about

any task within todays disceming business: I_ e _l
from data capture to word processing, from 3 i
card indexing to sales order entry. o i)w;iau}lacll héc:e a dt:monslmhon of the HX-20
Communicating with other machines is no ortable L-omputer.

problem and the HX-20 is easily coupled to Extraordinary product.

[Please send me details of my local stockist.
one of our fine printers. You can even link in Exceptional quality.

another main computer system by using an | Name |
i Epson (UK) Limited, Freepost, l o l

acoustic coupler. Wembley, Middlesex HAS 6BR. Position

Don't be fooled by its size, the HX-20 has Sgles Enquiries: Freefone EPSON. | Com ‘
all the software back-up you'd expect from a General Enquiries: 01-802 8892. R
much larger machine and incorporates many Telex: 8814169. l Address I
"bigger computer” features — 16k RAM
expandable to 32k with serial interfaces, a |_ Tel:
full size typewriter keyboard, it's own built in S GE T T e e

® Circle No. 106

Figure 27: This ad in the February 1982 issue of “Practical Computing” obviously aims at British customers,

following Winston Churchill’s famous words.

52

Try this with an ordinary computer.

The new Epson HX-20 is no ordinary computer.
Not by a long shot. It's the world’s only Notebook
Computer with the power of a desktop and the
portability of a handheld.

So you can do serious computing, data proces-
sing, even word processing. Anytime. Anywhere.

To start with the HX-20 has 16K RAM (option-
ally expandable to 32K), 32K ROM (optionally
expandable to 64K), RS-232C and serial inter-
faces, a full-size ASCII keyboard, a built-in micro-
printer with dot addressable graphics, a scrollable
LCD screen, five programmable function keys,
and... well, that’s just the beginning.

The HX-20 is small enough to tuck inside a
briefcase or under your arm. It runs on internal
power for 50-plus hours and recharges in eight. It
lets you interface with peripherals like MX Series
printers, the CX-20 battery-powered acoustic
coupler, a barcode reader, and audio cassette.
And you can even get it with options like a micro-

1.

cassette drive, ROM cartridge, floppy disk and
display controller.

Now, prepare to have your mind boggled by
one more feature: the price. The Epson HX-20
Portable Notebook Computer retails for less than
$800. That's right — less. Which means it’s just
right for students, businesspeople, kids — any-

body who's looking for an affordable way into

serious computing.

Powerful. Portable. Affordable. The HX-20 is
just what you'd expect
from Epson.

The extraordinary.

EPSON

EPSON AMERICA, INC.
COMPUTER PRODUCTS DIVISION

3415 Kashiwa Street - Torrance, California 90505 + (213) 539-9140

Circle no. 138 on reader service card.

Figure 28: And another extraordinary one lifted from the October 1982 issue of “Dr. Dobbs Journal”.

53

The new HX-20 Notebook Computer.
Where was it when I was a kid?

The new Epson HX-20 Notebook Computer is perfect for kids
But it's not just for kids

The HX-20 has as much total memory as most popular desk-
top computers. And, like a desktop, you can connect it to a
monitor, add extra memory, use a cassette or microcasselie to
load and store programs, play games, even interface with
other computers through a telephone modem

But that’s where the similarity ends. Because, unlike a desk-
top, the HX-20 has the hardware you need to do word and
data processing anywhere. Built in. It has enough internal
power to run for 50-plus hours, a full-size keyboard, a scroll
able LCD screen, even a handy little microprinter

But more importantly, it has something that no comparable
personal computer can match: a price tag of under $800. You
can haveeverything you need to do real computing for a lot less
than the cost of most desktop computers. A lot less

The new Epson HX-20 Notebook Computer. It's perfect for
kids, salespeople, business executives, students — anyone
who's looking for an affordable way into serious computing.

For the Epson computer dealer nearest you, just call
(800) 421-5426, or in California
(213) 539-9140

Try it out. After all, why
should kids have all the fun?

EPSON

EPSON AMERICA, iINC

e % COMPUTER PRODUCTS DIVISION

3415 Kashiwa Street - Torrance, California = (213) 539-9140
CIRCLE NO. 25 ON FREE INF ORMATION CARD

54

Figure 29: This ad was taken from the March 1983 issue of “CE”.

HX 20 schon ‘geknackt’
(Leserbrief von K. H. Kreeb, Worpswede, in 't
5/84)
Die ‘interne Software’ des HX-
20, fiir die sich Herr Kreeb in-
teressiert, ist schon seit lingerer
Zeit geknackt. Wir sind drei
HX-Freaks und geben seit Som-
mer 1983 eine HX-20-Fach-
zeitschrift ‘EPSILON’ heraus.
Diese erscheint 6 mal pro Jahr
und wird momentan von iber
400 Personen in ganz Europa
abonniert. Daneben vertreiben
wir eine HX-20-Dokumenta-
tion, die die Betriebsroutinen
und Systempointer des HX er-
lautert und auflistet, ein sehr
leistungsstarkes Textverarbei-
tungsprogramm, ein Debug-
ger/Compactorprogramm und
ein EPROM-Pro-
grammiergerdt. Am 3. Mirz
1984 veranstaltete EPSILON
eine HX-Tagung, an der 60
Abonnenten teilnahmen, u.a.
auch aus der Bundesrepublik
und aus Osterreich. Am 27. Ok-
tober 1984 findet die zweite Ta-
gung statt, die unter dem Gene-
ralthema ‘Kommunikation mit
EPSON-Computern’ stehen
wird.
Gerne senden wir Herrn Kreeb
und allen, die sich interessieren,
eine Probenummer zu.
Peter Addor, EPSILON,
Postfach 185,
CH-8704 Herrliberg-Ziirich
c’t 1984, Heft 6

g - -71

HX-20-
Video-Adapter
jet_zt

Und wieder einmal
‘HX-20 geknackt’

(Leserbriefe ¢’t 5; 6, 7/84)

Mt Interesse habe ich die Brie-
fe zum Thema ‘HX-20" ver-
folgt. Daraus ldBt sich schlie-
Ben, daf wahrscheinlich die mi-
serable Dokumentation der
meisten Computerhersteller
schon zum Standard erkldrt
wird. Beim HX-20 gibt es je-
doch nicht mehr so viel zu
knacken, da in dem von EP-
SON vertriebenen ‘Technical
Reference Manual’ das Moni-
torprogramm mit vielen Bei-
spielprogrammen in Assembler
erklért ist. Sicher bleiben noch
einige Geheimnisse zu liiften,
jedoch liegt der Verdacht nahe,
dafl auch User-Clubs ohne Er-
wahnung der Quelle aus diesem
Fundus zehren. Allein der Preis
von DM 300,— trubt die Freu-
de an diesem ansonsten vorbild-
lichen Werk.

Knut Brenndérfer, [smaning

-« 't 1984, Heft 8

Figure 30: The quest for finding more technical information shows up in letters to the German magazine c’t.

NN TEEE TN G B SR SN S e . 1
Deutschlands gréBter HX-20-Anbieter!!!

HX-Super-Video-Adapter V-2 (auch M-10 + TANDY)
7%10-Punkt-Matrix, gestochen scharfe Anzeige mit Unterldngen.
Daés'e\lung 80 Ze\chen x 24 Zeilen und 2 Statuszeilen (25. Zevle alternativ) ein-

Sie!

I' die

8x12 Punkt-Matrix,

Verbh
table Ver

| K
E
1 s
4]
zum Monitor! S
Kompletter HX-20- 2
g
k-
k]
Ly

samti

Tastatur (ESCAPE- SEOUENCEN) Kompletter' HX-20-Zeichencats. (nki. afer
HK-20-Grafikzeichen). Zusatzumschaltung auf 40 x 24, 40 x 12 und 20 x 8 —mit

entsprechend vergroBerter Darstellung auf dem Monitor. Anzeige:

@ stehend, blinkend und invers (auch gemischt méglich).

Kleines formschdnes Gehéuse (145/200/80 ca.). Sofort lieferbar. DM 998.- inkl.

HX-20-Super-Video-Adapter V-

weitgehend wie V-2,

3
jedoch hochaufidsende Grafik mit 512 x 512 Punkten —
einzeln setzbar/ldschbar. Ab 4/84

rogramm oder

HX-20-3,5"-
VIDEO-DISC
DM 3398.— inki.

I NEU - HX-20 FORTH - NEU I

1 Die neue Programmiersprache:

B Durch einfaches Einstecken des FORTH-EPROM's in den I
] freien Stecksockel im HX-20, haben Sie zusétzlich zu BASIC ||
die Pragrammiersprache FORTH zut Verfogung.

Es wird kein Speicherplatz belegt (RAM ble bt fres) []
FORTH-EPROM DM 198,— []

FORTH Handbuch, ca. 180 Seiten. englisch DM 45,-. abNov.'83 deutsch DM 79.-
Preisenclusive Mehneernsteuer l
1
1
[]
]
1

Wetsre Programme Adrefverwaltung- Stalisitk- Kalkuialanen Datenbant

o aarmasen. Fortein i unsore PIOGrAMON Ders o

art{-Tel.0T11/228471/72

afie 32 - 7000
C fiir

L;‘---;-----------':EH-J

€'t 1984, Heft 2

tion lauffahig

HX-20-Floppy-Set (bis 1,2 MB)
1-2 Laufwerke, je 320-640 K, voller
HX-20-Befehlssatz, Video-Adapter
und Floppy in gleichem oder se-
paratem Gehause. CP/M®-Be-
triebssystem, zusatzlich
P/M®-Programme
einsetzbar.

CP/M st ein Warenzeichen der
Digital Research. Inc.

| gestochen scharfe Zeichensatz (incl
Anze\ge mn Unter- Grafikz. + zusatzl.
ildschil 80 Zei- Steuerbefehle, um-
schirm: 255 Zei- Nahezu alle Pro-
chen x 48 ZeHen gramme am Moni- l
1 Hx 1

I SophienstraBe 32 - 7000 Stuttgart 1 - Telefon: 0711/228471/72 I
fiir

- e o e . s . -
't 1984, Heft 3

Achtung: HX-20 Video-Adapter-/Floppy-Set haben Original-EPSON-HIGH-SPEED-SERIAL-Anschius.

° Gssaml;:vognmm gegen 1.30 DM in Briefmarken!
Programme + Computer fir zeitgemaBe Anwendung

Figure 31: The company “time-soft” had many special offers for HX-20 owners.

55

> HX-20-Mikro-Floppy-Set 3,5 (wahiweise auch 5%") bis 1,5 MB (Mega-Byte)

1-3 Laufwerke, je 380-760 KB, voller HX-20-Befehissatz, mit integriertem

Video-Adapter (V-1)*, CP/M®-Betriebssystem durch 280-CPU in der Floppy,
K- Hauptspeicher — HX-20 als Keyboard - Durch CP/M haben Sie Zugriff auf

eine der groBten Software-Bibliotheken.

Software-Auszug: Kalkulation, S(aushk F\ugnavlgahon Baukalkulation, Auf-

gramm, Ul (OFU + DIN-4701-Program-
me, Ruhmetzbevechnungen Navnqahon As(rologle Einzelhandel, HX-20 als
Ladenkasse m usw.

Sophienstr. 32

7000 Stuttgart 1
Tel. (0711) *220071
Telex: 722706 tss d
S TEm

c’t 1984, Heft 9

EPSON Manager-Computer

ARRO

Neu!

HX20 -
Micro
Terminal

DM 1298, —
inkl. MWSL. m wow e

Dieses neue MICRO - TERMINAL fur den EPSON HX20 Hand - Held - Computer
gestattet die Darstellung von bis zu 80 Zeichen auf 25 Zeilen.

Das 2000 Zeichen - Display mit griinem Schirmbild und Antireflexscheibe
gewdhrleistet groBtmgliche Benutzerfreundlichkeit.

Sowohl Text, wie auch Graphik werden mit hoher Schirfe dargestellt.

Eine hervorragende ergonomische Konstruktion gibt die Maglichkeit durch
Drehen oder Kippen, das Sichtgerdt auf optimalen Betrachtungswinkel ein-
zustellen.

@ mirwald B™mc
clectronic

FasanenstraBe 8b, 8025 Unterhaching/Miinchen,
Telefon (0 89) 6 11 1224, FS 5213 476

Mit dem im Koffer
steckt Sie keiner in die Tasche.

Weil 5ie damit einen Assistenten an der Hand haben,
der fiir Sie merkt, rechnet, kalkuliert,
plant und schreibt,
Auf einer Flache nicht grofer als DIN A4
Mit einem einzigartigen Multi-Programm,
zu einem giinstigen Preis.
Kommen Sie vorbei, testen Sie lhren neuen Mitarbeiter.

mirwald ,
electronic

FasanenstraBe 8b, 8025 Unterhaching/Miinchen,
Telefon (0 89) 6 11 12 24, FS 5 213 476
Biire Frankfurt: Adalbertstr, 15
Telefon {06 11) 70 35 38

Technologie, die Zeichen setzt.

Biiro Frankfurt: Adalbertstr. 15
¢'t 1984, Heft 9 Telefon (06 11) 70 35 38

Figure 32: Besides a display controller, Mirwald also sold memory expansion boards for the HX-20.

Daten erfassen stelle in einen Rechner gelesen
werden. Uber eine ‘Kopfsta-
Die intelligenten Unterstatio- tion’ kénnen bis zu 32 Unter-

nen der Serie IMP232 erlauben stationen dezentral an einer op
die Erfassung von analogen toentkoppelten Leitung ange

Handbuch sowie Cii’!e mentge- und digitalen Daten ‘vor Ort’. schlossen werden.
StELIEFtP: Software, d!e‘das Pro- Diese Daten konnen dann di- ypke GmbH, TulpenstraBe 11, 7505
grammieren der [Cs im Stan- rekt iiber jede RS232-Schnitt- Etlingen 5, 07243/99804

dard- oder Intelligent-Modus
erlaubt. Das Programmiergerit
HXP2000 kostet als Bausatz
440 DM, als Fertiggerit 560 DM.

SES-Electronic, Im Grund 17, 6920
Sinsheim, 07261/3264.

HXP=2000

HX-20 programmiert
EPROMs

Das netzunabhingige Pro-
grammiergerdt HXP2000 kann
in Verbindung mit dem Epson-
Computer HX20 alle gingigen
EPROM-Typen programmie-
ren. Zum Lieferumfang des
Gerites gehoren ein (deutsches)

¢'t 1985, Heft 8 c’'t 1985, Heft 9

Figure 33: More accessories like EPROM programmer and data acquisition systems were available from 3™ parties.

56

tﬁnnen' Mit dem mmgeﬂeter-
ten Plott-Programm wei
die aufgezeichneten M
| te auf dem im HX-20 ein

. e 11987

8o handiich ist die Kombination ADDA-K un

Figure 34: And, another 12-bit A/D data acquisition system with digital I/O ports from CSM.

57

GRAPHIK-VIDEO-ADAPTER ,,EVA 1;“

ergénzt Ihren EPSON HX-20 zum komfortablen Computer-
Arbeitsplatz

Bis heute ist der [EVA 1a" wegen seiner Voligraphik von 480 x
200 Punkten und der vielen Extras schon uber 3000mal im
Einsatz - in mehr als 10 Landemn.

Technische Kurzdaten
Text-Modus: —32, 40, 72 und 80 Z. bei 24 Zeilen
— Inverse Darstellung
— Hellere Darstellung
— DIN- und ASCII-Zeichensatz
Graphik: — 480 x 200 Punkte
~ Testbild abrufbar
~ Beschriftung mit 80 Z./Zeile
- Autom. Parameter-Begrenzung

Unsere Vertragshandler zeigen lhnen mehr:

PLZ On Firma Telefon

1000 Berlin 30 TCV-Stroetmann 030/2 62 14 85
Computer-Centrum

1000 Berlin 31 CSM-Minhoff & Co 0 30/8 54 50 55
GmbH

2000 Hamburg Walter Kluxen GmbH 0 40/23 70 10

2800 Bremen Weber-Funk GmbH 04 21749 00 19

3000 Hannover TCV-Stroetmann 05 11/1 46 58
Computer-Centrum

3000 Hannover trendDATA Computer 05 11/1 46 29
GmbH

4000 Dusseldort datec Software GmbH 02 11/48 20 85
4000 Dusseldor! Helmut Rennen GmbH 02 11/30 60 98

4050 Manchen- Computer Commerce 0 21 61/1 87 64
gladbach

4100 Duisburg Heimut Rennen GmbH 02 03/2 49 26

4300 Essen Heimut Rennen GmbH 02 01/23 71 30

4350 Recklinghausen Computer Centrale 02361/4 5708

4400 Munster Computer Stimpel 02 51/79 69 29

4600 Dortmund Richard Milller GmbH 02 31/52 87 22

4630 Bochum BO-DATA GmbH & 02 34/70 22 77
Co. KG

5000 Koin Buromaschinen Braun 02 21/21 91 71

5860 Iserlohn Moller Blrotechnik 023 71/4 00 22

6000 Frankfurt Kegelmann 0 69/44 60 16
Computerhaus

6000 Frankfurt M.A.S. GmbH 0 69/67 60 14

6100 Darmstadt EBG Darmstadt GmbH 061 51/31 38 90
6200 Wiesbaden MicroGomp GmbH 0612145377

6500 Mainz Elphotec GmbH 06131/231947
6600 Saarbricken WIKO GmbH 06 81/6 34 44
6800 Mannheim Josef Arzt KG 06 21/2 38 44
7000 Stuttgart Fritz-Computer GmbH 07 11/7 80 02 38
7800 Freiburg Meisterknecht GmbH 07 61/3 16 66
7910 Neu-Uim Kumatronik GmbH 07 31/72 29 98
7980 Ravensburg Kumatronik GmbH 07 51/95 41/43
8025 Unterhaching Mirwald Electronic 089/6 11 20 40
GmbH

8500 Nirnberg Wagner GmbH 09 11/32 90 60
8672 Selb ROTRONIK P. Rogler 092 87/30 99

~SYSTEMS GmbH

Postach 1248, 2803 Weyhe 1

e 12/1984
Figure 35: Another video controller was developed by KK Systems in the north of Germany.

RAM-Disk fiir HX-20

Eine Speicherkapazitat von
2 x 128 KByte (netto) bietet die

RAM-Disk RDSK1 fiir den

Epson-Rechner HX-20. Die FUR
e e | (CIMIOS RAM-DISK = HX-20
hiuse untergebracht und schal- DEN

tet sich bei Datentransfer auto- RDSK1, 2x 128 KByte netto DM 1596,— — BuchgréBe 40x120x 185 mm

USth i, Wodureh disfistte: RDSK2, 2x256 KByte netto DM 2536,— — Gewicht nur 550 Gramm

rie-Kapazitit mindestens fiir 12 — 2x120 bzw. 2x 240 Directory-Eintrage
Stunden Betrieb ausreicht. Die — Datenerhalt bis zu 3 Monaten ohne Laden

gft]é,,e,r,l,?f l?tszggerzéﬁﬂwﬁf — Ladeautomatik fiir NiCd-Akkus eingebaut
digkeit gegeniiber dem norma- =SYSTEMS GmbH — P?wer-l'.‘ Automatik fiir D
len Diskettenlaufwerk und ko- — Bis zu 200mal schneller als Kassette
stet etwa 1600 DM. — Disk-BASIC voll TF-20-kompatibel

i — 12 Monate Werks-Garantie

KK-Systems GmbH, EichenstraBe 5,
e Sy;kimls iy oy EichenstraBe 5, 2808 Syke 2, Tel. 042 42/79 31 Unterlagen kostenlos anfordern

c’t 1985, Heft 12 't 1986, Heft 5

Figure 36: Also available from KK Systems: RAM disks for the HX-20.

58

Terminal Disc TD-10

Die Terminal Disc TD-10 ist ein schnelles
und kompaktes Speichermedium
fur Ihren Epson-Computer HX-20.

TD-10 arbeitet mit 3,5” Disketten.
Der verflgbare Speicherplatz auf dieser
Diskette betragt 780 KByte.

TD-10 ist software-kompatibel zur Epson TF-20.

EBG Darmstadt
Elekironik.

= =] .
E E E' Lothar Schanuel GmbH
[. | Heidelberger Str. 73, 6100 Darmstadt
: o
|

Tel. (061 51) 3138 90/31 26 93
c’t 1986, Heft 6

Telex 4 197 160 shan d

Figure 37: Obviously, there were other disk drives available besides the Epson TF-20

21. References and Further Reading

[1] Epson HX-20 - Technical Manual — Hardware.

[2] Epson HX-20 - Technical Manual — Software.

[3] Eratosthenes Sieve Benchmark Program, BYTE 1/1983.

[4] E. Balkan, “Using and programming the Epson HX-20”, Van Nostrand Reinhold, 1985.
[5] http://electrickery.xs4all.nl/comp/hx20/

[6] Brenndorfer, Knut, “Mehr Speicher fiir den HX-20”, Magazin “mc” 4/1984, pp. 119-121.
[7] Jebautzke, Michael, “Drucker am High-Speed Interface”, Magazin “mc” 7/1985, pp. 82-83.
[8] Bahmann, Wolfram, “Disassembler fiir HX-20”, Magazin “mc” 7/1983, pp. 66-67.

[9] Rohlfs, Kristen, “HX-20 plottet Funktionen”, Magazin “mc” 1/1984, pp. 86-87.

[10] Griindler, Rolf, “Datenbank-Dialog mit dem HX-20”, Magazin “mc” 12/1983, pp. 56-58.
[11] Schnieder, Hermann, “HX-20 als Terminal”, Magazin “mc” 2/1984, pp. 58-60.

[12] Wald, Elizabeth, “Slipping Sideways”, PCN February 1984.

59

