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About The Solver in Some HP Pocket Calculators 
Martin Hepperle, created May 2015, updated May 2021 

This document collects information about using the Solver application which is available in many of the 
older HP pocket calculators. This Solver offers the functions and LET ad GET functions, which are not 
explained in most manuals. Therefore HP produced an additional document explaining the application of 
these and other solver functions.  

Starting with an introduction to using these functions lifted from HP documentation additional 
applications, tips and tricks are shown. 
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Note that the HP 17B has been reissued in form of several more or less improved versions (17B, 17BII, 
17BII+ version 1 and 17bII+ version 2). In case of the later HP 17BII+ calculators we see two designs: a 
smaller one with a gold front plate and a re-engineered version with a larger form factor and a silver front 
plate. Unfortunately both of the 17BII+ designs include some software optimization that render the GET 
and LET functions almost unusable when assigning a value to a variable that appears in the menu of the 
equation. Therefore the older 17B and 17BII models a recommended if you plan to use GET and LET. 

 

The following description was taken from the booklet “Technical Applications” in the series “Step-By-
Step Solutions” published by Hewlett Packard in 1988. It had been written for the HP 27S and HP 19B but 
is also applicable to the HP17B family of calculators as long as they have the LET and GET functions. 
Note however, that these calculators do not have trigonometric functions (which can be approximated by 
techniques shown in this text). 
 

Excerpt from 

 “Technical Applications” 
Step-by-Step Solutions for Your HP Calculator 

Advanced Solver Techniques 

Using LET and GET 

Function Descriptions 

These two functions are not covered in your owner's manual. However, you'll find them useful in a variety 
of applications. LET assigns the value of an algebraic expression (or number) to a specific variable. GET 
recalls the contents of a specific variable. The format for these two functions is: 

Function: Description: 

L ( variable name : algebraic 
expression) 

Evaluates the algebraic expression, stores the 
result in the specified variable, and also returns 
that result as the value of the LET function. 
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G (variable name) Returns the contents of the specified variable. 

 

Like Σ and IF, LET and GET are for use only in Solver equations. Thus, you will not find these functions 
on a calculator key or in any menu. To use LET and GET in a Solver equation, simply type the letters G or 
L and include the parentheses around the arguments. If a variable appears only as the first argument of a 
LET function and/or only as the argument of a GET function, it will not appear in the menu of variables. 

There are many ways in which LET and GET enhance the capabilities of your Solver, and we will describe 
each of these in the pages that follow. 

First, a few examples will help introduce you to these two powerful functions. 

Example 1 

The Solver equation  

A = L(D:B+C)+SIN(D) 

stores the sum of B and C in D, and adds this result to the sine of D when calculating A. The LET function 
causes the value of D used in the argument of the sine function to be B+C. Notice that when this equation 
is “CALC”ed, A, B, C, and D all appear in the menu, but it is not necessary to explicitly enter a value for D 
since the LET function does so automatically. 

Example 2 

The Solver equation 

A=L(D:B+C)+SIN(G(D)) 

is functionally identical to the last example when calculating a result for A, but here the GET function is 
used in computing the sine of D. When this equation is “CALC”ed, D does not appear in the menu. This is 
because D only appears as the first argument of the LET function and as the argument of the GET function 
in this Solver equation. In the last example, D was the argument of the SIN function (an appearance 
outside the first argument of LET or GET), and thus did appear in the menu. 

Intermediate Variables 

Normally, whenever you use a variable in a Solver equation, it will appear in the menu. When variables 
are used in this manner they are referred to as formal variables or simply variables when no distinction is 
necessary. 

However, there are two cases in which a variable will not appear in the menu: 

1. The only occurrence of a variable is as the counter variable of the Σ function. 

2. The only occurrence of a variable is as the first argument of LET and/or as the argument of GET. 

The second case was illustrated in Example 2 for the variable D. When a variable is used only as the first 
argument of LET and as the argument of GET it is given the special name intermediate variable. This is 
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because intermediate variables hold intermediate results that can be used repeatedly in an equation, even 
though such variables do not appear in the menu. The user cannot directly assign a. value to an 
intermediate variable. Keeping an intermediate variable from appearing in the menu avoids confusion 
since the menu prompts only for relevant variables. 

Example 3 

The equation ( )ln b ca b c b c x += + - + +  can be implemented by the Solver equation 

A=L(D:B+C)-LN(G(D))+X^G(D) 

Here, D serves as an intermediate variable and will not show up in the menu. The use of D in this manner 
avoids having to type B+C more than once in the equation and keeps D from appearing in the menu, a 
source of possible confusion since there is no variable d in the original equation. 

Reducing Keystrokes with LET 

In some instances you may wish to use the LET function to reduce keystrokes (as shown in the previous 
examples), yet still view the value of the variable used with the LET function. This is accomplished by 
simply including the variable formally one or more times in your equation, thus causing it to appear in the 
menu of variables. An example will help clarify this. 

Example 4 

The Solver equation from Example 3 can be changed slightly to 

A=L(D:B+C)-LN(D)+X^D 

Notice that the GET function has simply been removed and now D appears formally two times; as the 
argument of ln, and as the power to which x is raised. We have still employed LET to reduce redundant 
keystrokes (typing B+C more than once), but now the sum b + c can be viewed by recalling D. 

A practical application of these last two techniques is in the calculation of planetary orbits as shown in the 
next example. 

Example 5: Orbits of Planets 

The equation in polar coordinates for a planet's orbit about the sun is given by: 
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Here, r  is the orbital radius, q  is the angle swept out by the planet as it orbits, p  is the distance between 
the focus and directrix (the orbit is always one of the conic sections), 0r  is the planet's orbital radius at its 
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closest approach to the sun, 0v  is its speed at the point of closest approach, G  is the universal gravitational 
constant, and M  is the mass of the sun. 

To simplify the orbital equation, we have used the variable e . You are probably familiar with this method 
of notation for complicated expressions. In an analogous manner, repetitive keystrokes can be eliminated 
in a Solver equation by using the variable E. The following Solver equation for the planet's orbit uses ANG 
to represent theta. 

R=PL(E:R0SQ(V0)/(GM)-1)/(1+ECOS(ANG)) 

Here we have used the LET function to assign a value to E and thus eliminate the need to type the rather 
long expression for E again later in the equation. Since the variable e in the original equations has special 
significance (the eccentricity of orbit), E is not used as an intermediate variable; instead, it appears 
formally as a multiplier of ( )cos q  and thus appears in the menu of variables. If it were not necessary to 
view E, the Solver equation 

R=PL(E:R0SQ(V0)/(GM)-1)/(1+G(E)COS(ANG)) 

could be used. Notice that the only change made from the previous Solver equation is to employ the GET 
function with E. We have still used LET to reduce keystrokes by assigning a value to E, and the equation 
is functionally identical to the previous Solver equation when R is solved for. However, now E does not 
appear in the menu. In this case, E is used as an intermediate variable. 

How LET and GET Change an Equation 

In many cases, when an unknown variable appears only once as a formal variable, the Solver algebraically 
rearranges the equation to isolate a direct solution. However, if an unknown variable appears formally 
more than once, the direct solution method always fails and the Solver attempts to locate a solution 
iteratively. When a variable appears as the first argument of LET or as the argument of GET, it is not 
considered by the Solver in determining whether a direct solution can be found. Thus, a variable may 
occur many times in an equation, yet only once formally. In these instances, a direct solution may be 
found, but it will not normally be “correct” mathematically. The next example will clarify this. 

Example 6 

The Solver equation 

A=2A+B 

is solved iteratively for A (since A appears twice formally) such that A=-B. On the other hand, the Solver 
equation  

A=2G(A)+B 

is treated much differently. When A is solved for, a direct solution is found (A appears formally only 
once). The Solver multiplies the current contents of A by 2, adds the contents of B, and stores this result as 
the new value of A. 
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Using New and Old Values 

As shown in “How LET and GET Change and Equation,” the Solver will often return a solution that is not 
“correct” in the strict mathematical sense when LET and GET occur in an equation. Actually, this result is 
quite useful and allows LET and GET to be used to assign new values to variables using the values they 
currently contain. This technique can be used in recursive problems; i.e., problems in which the next value 
of the output is dependent on the old output. Whenever you encounter an equation in which the unknown 
variable appears as both a formal variable and as the argument of a GET function, the GET function will 
use the current value of the variable (the value of the variable when the calculation is initiated). 

A helpful aid in understanding this is to think of the variable as behaving in two different ways: 

1. Where it appears formally, the variable is used as it would normally be in finding a solution to an 
equation; i.e., it can be algebraically rearranged to find a direct solution or used to find an iterative 
solution. 

2. As the argument of a GET function, the variable is treated as though it were a constant, not an unknown. 
The value used is the current value as previously described. 

In the LET function, the Solver does not check to see if a variable appears on both sides of the colon. 
Instead, it simply evaluates the algebraic expression on the right side of the colon using the current values 
of all variables. This result is assigned as the new value of the variable on the left side of the colon. 

Some specific examples will demonstrate these features. 

Example 7 

Consider the Solver equation 

A=G(A)+1 

Since A only appears once formally, the direct Solver is used. This equation recalls the current value of A 
(by the GET function) then adds 1. This result is then assigned as the new value of A. Thus, this simple 
equation increments A by 1 each time A is calculated. 

Example 8 

Like the last example, the Solver equation 

Q=L(A:A+1) 

also increments A by 1. In this case, Q is calculated instead of A. As mentioned above, the right side of the 
colon in the LET argument (A+1) is evaluated using the current value of A and this result is assigned as 
the new value of A. Note that A appears on the right side of the colon in the LET argument and therefore 
appears in the menu when the equation is “CALC”ed. 

The next example shows a practical use of these techniques. 

Example 9: Taylor Series Expansion 

The Taylor Series expansion for e is 
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How many terms are needed in the series to express e  accurately to 4 decimal places? 

The Solver equation 

E=G(E)+1/FACT(L(J:J+1)) 

will accomplish this. The GET used with E causes E to appear only once formally, and thus the direct 
method is used when E is solved for. The GET technique of Example 7 is used to add a new term 1 !j  to 
the current value of E each time E is calculated. This new result is then returned as the “solution” for E. 

Using the LET technique of Example 8, the equation increments J by 1 each time E is calculated. When 
the equation is “CALC”ed, E and J appear in the menu of variables. You should set E initially by storing a 
zero in it, since the sum should begin by GETting a zero value for E. From the defining equation for the 
series expansion of e , the sum should start at 0j = . J in the Solver equation is set to -1 initially so that 
the value of J used by the factorial function is zero the first time E is calculated. 

To view the full precision of the number as the Solver adds each term in the series, select the display 
format “ALL”. You will find that E must be calculated 8 times to express e  accurately to 4 decimal 
places. Thus, 8 terms ( 0j =  to 7 ) are needed to achieve the specified accuracy. 

When Not to Use LET and GET 

There are times when you must iterate to find the solution to an equation. The previous examples have 
shown how LET and GET change the way an equation is evaluated when their arguments are unknowns. 
Sometimes this can result in a direct solution that is not the desired solution. 

Consider the equation xx e= - . This is a transcendental equation; i.e., it cannot be algebraically 
manipulated to isolate a solution for x . Here it is necessary to iteratively find a solution. If you write the 
Solver equation  

X=-EXP(G(X)) 

with hopes that the Solver will somehow find a direct solution (since, formally, X only appears once), you 
are asking for a mathematical impossibility. The Solver equation above takes the base e , raises it to the X 
the power based on an initial value of X, and assigns the negative of this result as the final value of X. 

Arranging Menu Variables 

At times you may wish to arrange your equation variables in a specific order in the menu. There are two 
ways to do this. LET and GET Method. Recall that a variable only appears in a menu when it appears 
formally in an equation. When you press [CALC] after entering an equation, the Solver scans from left to 
right in your equation and assigns variables to the menu in the order in which they are encountered. A 
variable is not considered by the Solver in menu assignments under the following conditions: 

1. When a variable is used as a counter variable in the Σ function. 

2. When a variable is used as the first argument of LET. 
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3. When a variable is used as the argument of GET. 

This technique is shown in the example below. 

Example 10 

The equation ( ) 2ln ca b d e d= ⋅ + +  can have its variables arranged alphabetically using the Solver 
equation  

A=LN(BG(D))+EXP(C)+SQ(D) 

Since D first occurs as the argument of a GET function, it is not assigned to the menu until it is 
encountered as a formal variable in the term SQ(D). 

Note 

This technique of arranging menu variables is most useful when certain variables will not be unknowns. If 
the Solver equation of Example 10 is used to calculate D, the GET function causes new and old values of D 
to be used rather than a true algebraic solution. If the equation always calculates variables other than D, it 
is perfectly acceptable. 

Multiplication by 0 Method 

Unlike the LET and GET method, multiplication by zero does not cause the Solver to use new and old 
values of a variable. Instead, the true mathematical integrity of the equation is preserved. The next 
example shows how. 

Example 11 

The Solver equation of Example 10 can be rewritten as 

A=LN((B+0C)D)+EXP(C)+SQ(D) 

This will arrange the menu variables alphabetically and still allow all variables to be calculated. Notice 
that as the Solver scans this equation, it encounters the formal variables in the order A, B, C, and D. The 
multiplication by zero adds nothing to the argument of the natural logarithm function and its sole purpose 
is to arrange the variables alphabetically in the menu. 

Note 

Multiplication by zero causes variables that appear only once in a defining equation to appear more than 
once in a Solver equation. If these variables are unknown, the Solver will iteratively locate a solution since 
they appear formally more than once. For example, C appears formally twice in the Solver equation above 
even though it appears only once in the defining equation of Example 10. Thus, when C is calculated, the 
Solver will locate a solution iteratively. 

Solving for More Than One Variable at a Time 

In the last example, multiplication by zero was used to arrange the menu of variables in a Solver equation. 
Multiplication by zero has another very powerful use in Solver equations ... assigning a result to more than 
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one variable when a single unknown is calculated. This is done by employing the LET function and 
multiplication by zero. An example will illustrate this technique. 

Example 12: Nautical Depth Conversions 

Nautical depths are often measured in fathoms. Since most people do not “think” in terms of fathoms, 
conversion to more customary units is desirable. To convert from fathoms to feet, multiply by 6.000012; 
to convert from fathoms to meters multiply by 1.828804. A Solver equation that converts fathoms to feet 
and meters at the same time is 

FT=FATH6.000012+0L(M:FATHl.828804)+0M 

Here we assume that fathoms (FATH) is the known quantity, and feet (FT) and meters (M) are unknown. 
Notice that when FT is calculated, the Solver multiplies FATH by the proper conversion factor. Then, the 
LET function is multiplied by zero so that its value will not affect the value of FT. The LET function will 
assign the proper value to M. We have also included the term 0*M to cause M to appear formally and 
hence, in the menu of variables. When FT is calculated, the Solver returns a proper result and stores the 
number of meters in M. To see M, you must recall it using RCL M. 

Note 

This technique of solving for more than one unknown is most useful when certain variables will not be 
unknowns. The Solver equation of Example 12 is intended to be used only when FATH is known and FT 
and M are to be found. Solving for M will result in the message SOLUTION NOT FOUND since the direct 
Solver will attempt to isolate M and a division by zero error occurs. In general, this technique should not 
be employed when all variables in an equation will be calculated. 

The next example combines several of the techniques you have learned so far to solve a practical problem. 

Example 13: Complex Multiplication 

To multiply two complex numbers x a i b= + ⋅  and y e i d= + ⋅ , use the formula 

 ( ) ( )x y a e b d i b e a d⋅ = ⋅ - ⋅ + ⋅ ⋅ + ⋅  . 

A Solver equation can be written that calculates the product, stores the real part of the product as a and the 
imaginary part as b, and leaves e and d unchanged. This makes the equation useful for chain calculations. 

0L(R:AG(C)-BG(D)) Stores the real part of the product x y⋅  in the intermediate variable 
R. The intermediate variable R is employed since we do not want to 
store the real part of the product in A yet. Before A can be assigned 
a new value, the current value of A is needed to calculate the 
imaginary part of the product. Notice that GET is used with C and D 
so that the menu of variables will be in the order A, B, C, D, and XY. 
This can be verified by looking at the equation as a whole and 
noting the order in which the values appear formally when scanning 
from left to right. 
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+0L(B:BC+AD) Stores the imaginary part of the product x y⋅ in B. 

+L(A:G(R))=XY Stores the real part of the product x y⋅  in A since the original value 
of A is no longer needed. GET is used with R since it is an 
intermediate variable and is not to appear in the menu. Notice that 
all the LET functions except this one are multiplied by zero. Thus, 
when XY is solved for, the Solver uses a direct solution method (XY 
appears formally only once) and effectively reduces the equation to 
XY = R. When XY is solved for, the real part of the product is 
displayed and the real and imaginary parts of the product are stored 
in A and B respectively. Notice that C and D are left unchanged. 

Since the real part of the product is returned as the value of XY, this eliminates having to press RCL A 
after every calculation to see the real part of the product. To see the imaginary part, press RCL B. An 
application with several complex number functions has been developed in Chapter 2 of this book using the 
ideas m this equation. 

Evaluation Order 

As your Solver equations become increasingly more sophisticated, you may find that using LET and GET 
takes a bit of forethought to ensure that the Solver assigns and recalls values in the order you intended. 
When calculating an unknown, your calculator effectively rearranges the equation and either isolates the 
variable in question and solves for it directly, or uses an iterative process. During rearrangement, the 
simple left-to-right order of evaluation may be disturbed. 

For example, when 

G(X)+Y=0L(X:4+X)+4 

is solved for Y, it is not obvious if the GET or LET is performed first. Actually, the Solver performs the 
LET before the GET in this equation. 

Most ambiguities in using LET and GET can be avoided by observing the following guidelines: 

1. Place all LET and GET functions on the same side of an equal sign. 

2. Try to group the variable(s) you are calculating on the other side of the equals sign. 

When these guidelines are followed, you can assume that the simple left-to-right evaluation process 
occurs. 

Forcing Iteration 
Although the idea of forcing iteration was introduced in your owner's manual, it bears repeating here. An 
equation such as ( )1 sin x=  can be solved directly for x , but there are an infinite number of solutions to 
this equation given by ( )2 1 2x n p=  ⋅ + ⋅  for 0n = , 1 , 2 , .... 

The Solver will find the root corresponding to the principle value of the sine function. In general, the 
trigonometric functions operate using the principle value. If you are interested in a root that is not a 
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principle value, you can re-write the equation in a mathematically equivalent form that forces an iterative 
solution. This allows you to enter initial guesses instructing the Solver to look for a root between the two 
bounds. The equation above can be entered as the Solver equation 

1=0X+SIN (X) 

This forces an iterative search since X appears formally twice. 

More on Using the Σ Function 

Definite and Indefinite Loops 

A loop is a technique used by computer programmers to repeat a certain section of instructions a number 
of times before continuing to other instructions. Often, the loop is executed a fixed number of times (a 
definite loop), while other times the loop repeats indefinitely until a certain condition is met. The second 
type of loop is referred to as an indefinite loop. 

 

The definite loop illustrated in the figure will generate the sum of the squares of the integers 1 through 
10. Notice that A is 0 initially, the loop counter N is 1 initially, and the loop counter is incremented by 1 
with each pass through the loop. The definite loop is performed a fixed number of times (10 in this case). 
On the other hand, the indefinite loop repeats indefinitely until the desired condition (X<=100) is met. By 
using the Σ function you can effectively include definite loops in your equations. In fact, the Σ function 
was designed to operate as a definite loop. Indefinite loops may also arise. While you are not able to 
construct a true indefinite loop for reasons that are explained below, you can effectively simulate one. 



 

 
12 

 

Simulating an Indefinite Loop 

The Σ function is defined as follows: 

Σ(cv:c1:c2:s:alg) 

where the algebraic expression (alg) is evaluated and summed for values of the counter variable (cv). 
The counter variable starts with value c1 and is incremented in steps of s to a final value of c2. When the 
Σ function is first encountered in an equation, the Solver stores the step size s and the counter variable's 
initial and final values c1 and c2 in a special location in memory not accessible to the user. Any attempt 
to alter the values of s, cv, c1, or c2 using the LET function causes the Solver to create separate 
variables of the same name. Since the value of these variables cannot be changed, a loop cannot be 
prematurely exited. This is precisely what makes construction of a true indefinite loop impossible. 
However, an indefinite loop can be simulated as shown in the next example. 

Example 14: An Indefinite Loop 

To simulate the indefinite loop shown in the previous figure, the Σ function can be performed until the 
desired condition (X<=100) is met. Then the loop can simply add zeroes to this result on subsequent 
passes until the final value of the counter variable is reached. To avoid having too few or far too many 
loop repetitions, a way is needed to determine in advance the maximum number of loops necessary to 
meet the desired condition and to assign this value to c2. For the example at hand, we must find the 
number of times n that X must be divided by 3. This is given by the equation 

 100
3
initial
n

X
<  . 

If this is solved for n, we obtain the maximum number of loops needed to obtain the desired result 
(X<=100). Rearranging and taking the logarithms of both sides we have 

 ( )100 ln ln 3
1003

initial initial
n

X X
n

æ ö÷ç ÷<  = ⋅ç ÷ç ÷çè ø
 . 

Solving for n, we obtain the final result  

 
( )

ln
100

n
ln 3

initialXæ ö÷ç ÷ç ÷ç ÷çè ø
=  . 

This value of n is the value for c2 that guarantees sufficient passes through the loop. The Solver equation 
is shown below. 

Equation Comments 

A= The variable we will calculate. 

Σ(N:1: The counter variable is N and is set initially to 1. 
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IF(X<=300:1:  
LN(X/100)/LN(3)+1): 

This is the final value of the counter variable. The 
conditional check made by the IF insures that at 
least 1 loop will be performed (if X is less than 
300, n is less than 1). In the event that X>300, 
the result for n derived above is used with a small 
change: here we have added a 1 to the result. If 
this had not been done, the loop would only be 
performed n-1 times instead of n times. 

1: This is the step value; i.e., N is incremented by 1 
each time the loop is repeated. 

IF(X<=100 AND N<>1: 
0:0L(X:X/3))) 

The body of the loop. If X is less than or equal to 
100 and it is not the first pass through the loop 
(N<>1), a zero is added to the loop and X remains 
unchanged. If X is greater than 100 or N=1 (first 
pass), the current value of X is divided by 3 and 
this result is assigned as the new value of X. 
Notice that the LET function is multiplied by zero 
causing the Σ function to have a value of zero. 
The 3 closing parentheses are needed to complete 
the LET function, the IF function, and the Σ 
function respectively. 

+X This term simply adds the final value of X to the 
value of the Σ function (which is zero as noted 
above) leaving the effective result A=X. This final 
value of X is returned as the solution for A. 

A practical use of this Solver technique can be found in the application “Greatest Common Divisor and 
Least Common Multiple” in Chapter 2 of this book. 

Using Trigonometric Functions 
Equations involving trigonometric functions often demand that the variables be in radians rather than 
degrees. For example, in a branch of mathematics known as Fourier Transforms, the sinc function arises 
and is defined as 

 ( )
( )sin

sinc
x

x
x

=  . 

Here, x must be in radians; however, it is often desirable to enter x in either radians or degrees. A 
convenient way to accomplish this is with a conditional check, illustrated in the following Solver 
equation: 

SINC=IF(SIN(90)=1:SIN(X)/RAD(X):SIN(X)/X) 
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Notice that the conditional check is true only when the calculator is in degrees mode. Although you must 
be aware of what mode the calculator is in when entering numbers in this Solver equation, this technique 
eliminates the need to always set radians mode and the need for two separate Solver equations (one for 
degrees and one for radians). 

Note 

The sinc  function has the indeterminate value 0 0  at 0x = . By a technique of calculus known as 
L'Hopital's Rule, the sinc  function can be shown to approach 1  as x  approaches 0 . Thus, the sinc  
function is defined as 1  at 0x = . To give a correct result for 0x = , the above Solver equation can be 
modified slightly to: 

SINC=IF(X=0:1:IF(SIN(90)=1:SIN(X)/RAD(X):SIN(X)/X)) 

In Conclusion 
Although it is unlikely that you will want to use every application in this book, they represent operations 
that arise frequently in science and engineering. For this reason, you will probably want to keep several 
applications in your calculator's memory. To give yourself plenty of room to store and “CALC” the 
application Solver equations, we recommend that you delete the example equations created in this chapter 
after you have worked through them. Recall from your owner's manual that Solver variables are 
“remembered” by the calculator for use in moving from one Solver equation to another. These variables 
consume a significant amount of calculator memory and should be periodically reviewed and deleted as 
described in your owner's manual. 

 

End of Excerpt from  “Technical Applications” 
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Function Group Syntax Purpose 
x x x x x math ABS ( A ) Return the absolute value of A. 

  x x x math ACOS ( A ) Return the arcus cosine of A (inverse cosine of A). 

  x x  math ACOSH ( A ) 
Return the arcus hyperbolic cosine of A (inverse hyperbolic 
cosine of A). 

x x x x x math ALOG ( A ) Return the common antilogarithm (base 10) of A. 

  x x x math ANGLE ( A : B ) 
Return the polar coordinate angle of the point (A : B) given in 
rectangular coordinates. 

  x x x math ASIN ( A ) Return the arcus sine of A (inverse sine of A). 

  x x  math ASINH ( A ) 
Return the arcus hyperbolic sine of A (inverse hyperbolic sine 
of A). 

  x x x math ATAN ( A ) Return the arcus tangent of A (inverse tangent of A). 

  x x  math ATANH ( A ) 
Return the arcus hyperbolic tangent of A (inverse hyperbolic 
tangent of A). 

  x x x math COMB ( A : B ) 
Return the number of combinations of A items taken B at a 
time. 

  x x x math COS ( A ) Return the cosine of A. 

  x x  math COSH ( A ) Return the hyperbolic cosine of A. 

  x x x math DEG ( A ) Return A converted from radian to decimal degrees. 

x x x x x math EXP ( A ) Return the natural antilogarithm (base e) of A. 

x x x x x math EXPM1 ( A ) 
Return e^A - 1 : one less than the natural antilogarithm (base e) 
of A. 

x x x x x math FACT ( A ) Return the factorial of A. Mathematical notation: A!. 

x x x x x math FP ( A ) Return the fractional part of A. 

x x x x x math IDIV ( A : B ) Return the integer part of the quotient of A/B. 

x x x x x math INT ( A ) Return the greatest integer less than or equal to x. 

x  x x x math INV ( A ) Return the inverse of x; 1/A. 

x x x x x math IP ( A ) Return the integer part of A. 

x x x x x math LN ( A ) Return the natural (base e) log of A. 

x x x x x math LNP1 ( A ) Return the natural (base e) log of (A+1). 

x x x x x math LOG ( A ) Return the common (base 10) log of A. 

x x x x x math MAX ( A : B ) Return the larger of A and B. 

x x x x x math MIN ( A : B ) Return the lower of A and B. 

x x x x x math MOD ( A : B ) 
Return the remainder of the division A/B. MOD(A:B) = A - B 
* INT(A/B). 
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  x x x math PERM ( A : B ) Return the permutations of A items taken B at a time. 

x x x x x math PI Return the number pi: 3.14159265359. 

  x x x math RAD ( A ) Return A converted from decimal degrees to radians. 

  x x x math RADIUS ( A : B ) 
Return the polar coordinate radius of the point (A : B) given in 
rectangular coordinates. 

  x x * math RAN# Return a pseudo-random number (within 0…1). 

x x x x x math RND ( A : B ) 
Return A rounded to B decimal places if 0 <= B <= 11. Return 
A rounded B significant digits if - 12 <= B <= -1. B must be an 
integer. 

x x x x x math SGN ( A ) Return the sign of A: +1 if A > 0, 0 if A = 0, -1 if A < 0. 

  x x x math SIN ( A ) Return the sine of A. 

  x x  math SINH ( A ) Return the hyperbolic sine of A. 

x  x x x math SQ ( A ) Return the square of A; A^2. 

x x x x x math SQRT ( A ) Return the square root of A. 

  x x x math TAN ( A ) Return the tangent of A. 

  x x  math TANH ( A ) Return the hyperbolic tangent of A. 

x x x x x math TRN ( A : B ) 
Return A truncated to B decimal places if 0 <= B <= -11. 
Return A to B significant digits if -12 <= B <= -1. B must be an 
integer. 

  x x x math XCOORD ( A : B ) 
Return the x-coordinate of point given in polar coordinates 
with radius A and angle B. Uses the current angle unit. 

  x x x math YCOORD ( A : B ) 
Return the y-coordinate of a point given in polar coordinates 
with radius A and angle B. Uses the current angle unit. 

x x x x x conditional operators A > B Return TRUE if A higher than B. 

x x x x x 
conditional operators 

A < B Return TRUE if A lower than B. 

x x x x x 
conditional operators 

A = B Return TRUE if A equal to B. 

x x x x x 
conditional operators 

A >= B Return TRUE if A greater or equal to B. 

x x x x x 
conditional operators 

A <= B Return TRUE if A lower or equal to B. 

x x x x x 
conditional operators 

A <> B Return TRUE if A not equal to B. 

x x x x x logical operators A AND B Return TRUE if both (A and B) are TRUE. 

x x x x x logical operators A OR B Return TRUE if one or both of (A or B) are TRUE. 

x x x x x logical operators A XOR B 
Return TRUE if only one of (A or B) but not both are TRUE 
(in 18C manual incorrectly named EXOR). 

x x x x x logical operators NOT A Return TRUE if A is FALSE. 

x x x x x logical operators IF ( A : B : C ) 
Return B if A is TRUE, else C. Note: some expressions may 
need + in front of A to be valid. 

x  x x x logical operators S ( A ) 
Return TRUE if solving for the variable named A. Can be used 
inside the IF() function to combine related equations into one 
Solver menu. 

x  x x x date CDATE Return the current date. 

x  x x x date CTIME 
Return the current time. For the format see MAIN->TIME-
>SET->HELP. 

x x x x x date DATE(A:B) 
Return the date B days after (when B is positive) or before 
(when B is negative) date A. The format for A is set in the 
TIME/SET menu. 

x x x x x date DDAYS ( A : B : C ) 

Return the number of days between dates A and B. Formats for 
A and B are set in the TIME menu; C designates the calendar:  
C = 1 for the actual calendar, which recognizes leap years, 
C = 2 tor the 365-day calendar, which ignores leap years, 
C = 3 for the 360-day calendar, which uses 12, 30-day months. 

x  x x x date HMS ( A ) Return A in decimal hours converted to HH.MMSS format. 
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x  x x * date HRS ( A ) Return A in HH.MMSS format converted to decimal hours. 

x  x x * statistics (SUM lists) ITEM ( A : B ) Return the value of item number B from the sum-list A. 

x  x x x statistics (SUM lists) ∑ ( A : B : C : D : E ) 
Return the summation of the algebraic expression E for values 
of the counter A, stepping from B to C at increments of D. 

x  x x * statistics (SUM lists) SIZES ( A ) Return the number of items in the specified SUM list A. 

  x  x TVM functions N ( A : B : C : D : E : F ) Return the function N for TVM calculations. 

  x  x TVM functions I%YR ( A : B : C : D : E : F ) Return the function I%YR for TVM calculations. 

  x  x TVM functions PV ( A : B : C : D : E : F ) Return the function PV for TVM calculations. 

  x  x TVM functions PMT ( A : B : C : D : E : F ) Return the function PMT for TVM calculations. 

  x  x TVM functions FV ( A : B : C : D : E : F ) Return the function FV for TVM calculations. 

x  x  * financial (CFLO lists) FLOW ( A : B ) Return the value of the specified cash flow. 

x  x  * financial (CFLO lists) SIZEC ( A ) Return the number of the last flow in CFLO list A. 

x x x x x financial (CFLO lists) SPPV ( A : B ) 

Return the present value of a single $1.00 payment; equivalent 
to 1 / SPFV( A : B ). B is the number of compounding periods. 
A is the interest rate per compounding period, expressed as a 
percentage. 

x x x x x financial (CFLO lists) SPFV ( A : B ) 

Return the future value of a single $1.00 payment; equivalent 
to (1 + A / 100%)^B. B is the number of compounding periods. 
A is the interest rate per compounding period, expressed as a 
percentage. 

x  x  * financial (CFLO lists) #T ( A : B ) 
Return the number of times that specified cash flow number B 
occurs in list A. 

x x x x x financial (CFLO lists) USFV ( A : B ) 

Return the future value of a uniform series of $1.00 payments; 
equivalent to (SPFV(A:B)-1)/(B/100). A is number of 
payments. B is the periodic interest rate, expressed as a 
percentage. 

x x x x x financial (CFLO lists) USPV ( A : B ) 

Return the present value of a uniform series of $1.00 payments; 
equivalent to USFV(A:B)/SPFV(A:B). A is number of 
payments. B is the periodic interest rate, expressed as a 
percentage. 

(x)  x x x assignments L ( A : B ) 

Return the value of B and perform the assignment A = B. 
Defines the value of variable A to be B. B can be a number or a 
variable. Returns the value set, i.e. B. (Note: not implemented 
in the first generation golden 17bII+, but in the later larger 
silver 17bII+). 

(x)  x x x assignments G ( A ) 
Return the current value of A. (Note: not implemented in the 
first generation golden 17bII+, but in the later larger silver 
17bII+). 

 

* The Palmtop computers HP 100LX and 200LX have additional functions to interact with Lotus 123 and 
slightly different functions for working with financial data. These are marked with an asterisk in the table. 

Syntax Purpose 
CALCCELL(input list, output range, row, col) Send expression(s) to the 1-2-3 worksheet and return the value of output cell. 

CPCOL Return column of the current cell pointer. 
CPROW Return row of the current cell pointer. 

LENGTH(range) Return the number of rows in the given range. 
WIDTH(range) Return the number of columns in the given range. 

RCLCELL(range, row, col) Return the value of a worksheet cell. 
STOCELL(expr, row, col) Store result of expression in the given cell. 

HR(time) This function is called HRS in the other solvers. 
RAND Can be used as an alternative name for RAN#. 

FLOW(filename, row) Use specified cash flow from a file. 
SIZEC(filename) Return the last flow number in a file. 
 SIZES(filename) Return the number of statistics rows in a file. 

ITEM(filename, row, col) Return a value from statistics a file. 
#T(filename, flownum, row) Return the group size of cash flow in a file. 
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Some examples of creative usage of the sum function: 

Replacement for missing trigonometric functions: 

Determine the cosine of an angle θ (in radian) by a series using the SUM (Σ) function 

COS=1+Σ(I:2:12:2:((MOD(I/2:2)-2)+1)(θ^I)/FACT(I)) 

Determine the sine of an angle θ (in radian) by a series using the Σ function 

SIN=Σ(I:1:13:2:((MOD((I-1)/2:2)-2)+1)(θ^I)/FACT(I)) 

Determine the tangent of an angle θ (in radian) by a series using the Σ function 

TAN=Σ(I:1:13:2:((MOD((I-1)/2:2)-2)+1)(θ^I)/FACT(I)) / 
(1+Σ(I:2:12:2:((MOD(I/2:2)-2)+1)(θ^I)/FACT(I))) 

More Equation Snippets 

A compact way to set three variables A, B, C to zero 

L(A:L(B:L(C:0))) 

To assign a local variable and not use the result in the equation multiply by zero 

L(A:12)0 

A trivial example how to use local variables X and Y to solve the equation A+B=0. A0 and B0 are 
required to allow for solver to find solutions for A and B, otherwise he finds no solution. 

L(X:A)L(Y:B)0+G(X)+G(Y)+A0+B0 

Integration 

Determine the area S under the curve ky x=  in the interval from X0=0 to X1=1. 

The analytical solution by integration of the function yields the accurate result S = 1/(k+1)(X1-
X0)^(k+1). 

The area can be approximated by the sum of N strips each having the width dx = (X1-X0)/N. 

Each strip is centered at X0+dx/2, X0+3/2dx, up to the last one at X1-dx/2 

S = Σ ( I : 0 : N-1 : 1 : (X0+(I+0.5)(X1-X0)/N)^K )  (X1-X0)/N 

Using the L() and G() functions available on some calculators one could pre-calculate the strip width 
(X1-X0)/N and store it in a local variable DX. 

Rectangular (X,Y) to Polar (R,ϕ) Conversion 

As a business calculator, the HP 17B does not provide the trigonometric functions. Therefore, we 
implement an approximation for the inverse tangent function as part of a rectangular to polar conversion 
equation. 
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Note that these equations produces two outputs from two inputs, therefore this equation is not reversible. 
You enter X  and Y  and can then ask for the angle f  and the radius R. 

Two versions A) and B) of this approximation are presented below: 

A) is valid inside the first quadrant only (i.e. 0X >  and 0Y > ) and yields angles between 0  and 2p , 

B) is valid in all four quadrants into account and yields angles between 0  and 2 p⋅ . 

 

The approximation used here is quite accurate for 0 1Y X£ £ . 

If 1Y X < : we use the approximation ( )ARCTAN Y X  

Otherwise: we use the transform         ( ) ( )2ARCTAN Y X ARCTAN X Yp= -  

 

Visible menu variables: 

X  horizontal coordinate, input 

Y  vertical coordinate, input 

f  angle, always in radian, output 

R  radius, output 

 

A) Approximation of ARCTAN(Y,X) in the first quadrant (X>0,Y>0) 

Invisible, intermediate variables: 

Case X Y> X Y£

B: argument  Y X  X Y  

S: sign  1+  1-  

P: additive term 0  2p  

 

The first part of the equation introduces R and sets the local variables B, S, P and calculates the radius R 

 Ø = (R-R) + 
     (IF(X>Y 
         : L(B:Y/X) + L(S:1)  + L(P:0) 
         : L(B:X/Y) + L(S:-1) + L(P:PI/2)) + 
      L(A:SQ(1/G(B))) + 
      L(R:SQRT(SQ(X)+SQ(Y))) 
     )0 +  

This is the core approximation of ARCTAN(X) 
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     G(P) + G(S)(15159+(147455+(345345+225225G(A))G(A))G(A)) / 
          (35G(B)(35+(1260+(6930+(12012+6435G(A))G(A))G(A))G(A))) 

 

B) Approximation of ARCTAN(Y,X) taking all 4 quadrants into account: 0 2f p£ £ ⋅  

Additional invisible, intermediate variables: 

Quadrant Q1 Q2 Q3 Q4 

ending angle        90 180 270 360 

T: sign            +1 -1 +1 -1 

Q: additive term 0 p  p  2 p⋅  

 

 

Figure 1: The assignment of the intermediate variables Q and T for each quadrant. Q is used as an offset and T controls 

whether the ARCTAN term is added or subtracted from Q. 

This first part brings R into the menu (and allows to recall it) and sets the local variables Q and T for each 
quadrant 

 Ø = (R-R) + 
     (IF(X<0 
         : L(Q:PI) + IF(Y<0 
                        : L(T:1) 
                        : L(T:-1)) 
         : IF(Y<0  
              : L(Q:2PI) + L(T:-1) 
              : L(Q:0) + L(T:1))) +  

This second part sets local variables B, S, P as above and calculates the radius R 

      IF(ABS(X)>ABS(Y) 
         : L(B:ABS(Y/X)) + L(S:1) + L(P:0) 
         : L(B:ABS(X/Y)) + L(S:-1) + L(P:PI/2)) + L(A:SQ(1/G(B))) + 
      L(R:SQRT(SQ(X)+SQ(Y))) 
     )0 + 
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Then we prefix the core approximation with the offset Q and multiply with the sign T 

     G(Q) + G(T) 
      (G(P) + G(S)(15159+(147455+(345345+225225G(A))G(A))G(A)) / 
        (35G(B)(35+(1260+(6930+(12012+6435G(A))G(A))G(A))G(A)))) 

 

My source for the ARCTAN approximation was this paper: 

Kurzweg, Ulrich H., Timmins, Sidey P., “A new method for obtaining highly accurate approximations to 
the ARCTAN function”, 2011. Preprint from an unknown journal or conference. 
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More examples from the Forum of the Museum of HP Calculators 

The Museum of HP Calculators 

 

Conversion of Numbers from different Bases  

Numbers in decimal or lower base (not hexadecimal) can be converted with the following solver equation 

ANS = N + (FROM – TO)  Σ ( I : 0 : LOG(N)/LOG(TO) : 1 :  
                            L(N:IDIV(N:TO))  FROM^I ) 

ANS returns the conversion of N from the base FROM to the target base TO. The two bases must be lower 
or equal to 10 so the conversion to binary or octal forms are the most useful application. 

Example: 

10 > FROM (from decimal) 

8 > TO (to octal) 

16 > N (number to convert, will be reduced to zero during evaluation) 

ANS = 20 (result: 16 in octal) 

Note that this equation works in the older 17B and 17BII but not in the later HP 17bII+. This is because 
the input variable N is modified by the LET function inside the sum and the optimized solver of the 
HP17B+ executes the equation at least twice (reducing N to zero during the first evaluation) and finally 
finds … SOLUTION NOT FOUND.  

However, if a new variable N0 is created and initialized to the preset value of N first (using the LET 
function and nullifying the result) and then used in place of N inside the equation the algorithm also works 
in the HP 17BII+. 

ANS = LET(N0:N)0 + N +  
      (FROM – TO)  Σ ( I : 0 : LOG(G(N0))/LOG(TO) : 1 :  
                                L(N0:IDIV(G(N0):TO))  FROM^I ) 

The GET function is used to suppress the appearance of the variable N0 in the solver menu. 

Even if the equation is executed twice by the solver of the HP 17BII+, the variable N is not changed and 
N0 is always set properly to N before the sum is evaluated. 

Source: Don Shepherd, Thomas Klemm HP-Forum [http://www.hpmuseum.org/forum/thread-
1660.html?highlight=base+conversion]. 

 

Programming using the HP 17bii+ solver  

Posted by Don Shepherd on 14 Apr 2007, 2:48 p.m. 
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The HP 17bii+ calculator has several characteristics that might make it interesting to members of this 
community:  

 it fits in your shirt pocket nicely  

 it has a 2-line display  

 it has 6 soft function keys  

 it has user-definable menus  

 it has a very uncluttered keyboard  

 it has useful finance and business functions  

 it can print using a small infrared printer  

 you can use either RPN or algebraic mode  

 it has 12-digit accuracy  

 it has 30,740 bytes of user memory  

 it is programmable  

 it is still being manufactured! 

I became interested in this model after reading somewhere that it was programmable. I determined that it 
is not “keystroke” programmable like its financial brother, the venerable 12c and its successors. But it is 
programmable via the built-in equation solver application.  

I imagine that the original inventors of the equation solver never intended that it would be used as a 
general purpose “programming” language, just as the inventors of the 12c cash flow functions probably 
never imagined that anyone would use those financial functions for indirect addressing. But the great thing 
about HP calculators is that both those things are possible. And members of this community have always 
been willing to share insights and experiences.  

So I bought the 17bii+ just to see what it could do, from a programming perspective. I knew that every 
programming language must support three structures: sequence, decision, and iteration (loops). So I began 
to look at the solver. Yep, it can do sequences (especially when you put “0” next to things you don’t 
want to be included in the solution).  

Yep, it can do decisions (IF (condition : do if true : do if false)) And yep, it can do 
loops (sigma function). And it can assign values to named variables (load function) and use those 
variables (get function) in calculations. The solver cannot use the 10 registers, but since you can create 
your own variable names, that is not a shortcoming. The solver cannot execute subroutines, GOTO a label 
or line number, or exit a loop early, and this makes it unacceptable as a general purpose programming 
language. But I found that you can still do some useful things with it.  

For instance, you can sum the digits of a number:  

sod = sigma(i:0:log(n):1:mod(ip(n):10)+0xL(n:n/10)) 
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You can determine if a number is prime or not (a result of 0 means the number is prime, any other number 
is the first factor of the input number):  

fact = 0xL(j:0)+ 
if(mod(n:2)=0:2:sigma(i:3:sqrt(n):2: 
if(mod(n:i)=0:if(g(j)=0:0xL(j:1)+i:0):0))) 

You can calculate a standard mod-10 checkdigit (maximum 12 input digits):  

ckdig = 0xL(m:2) L(c:-1) 
+mod(10- 
mod(sigma(i:0:log(n):1: 
0xL(a:mod(ip(n):10) g(m)) 
+if(g(a)<10:g(a):g(a)-9) 
+0L(m:g(m)+g(c)) 
L(c:-g(c)) 
L(n:n/10)):10):10) 

You can convert from decimal to binary:  

dec2bin = sigma(i:0:11:1:mod(n:2)(10^i)+0L(n:ip(n/2))) 

Or from binary to decimal:  

bin2dec = sigma(i:0:log(n):1:mod(ip(n):10)2^i+0L(n:n/10)) 

Or from decimal to octal:  

dec2oct = sigma(i:0:11:1:mod(n:8)(10^i)+0L(n:ip(n/8)) 

I tried to carefully type the equations above, but I’m not perfect. If you try one of these on your 17bii+ and 
can’t get it to work, post a message on the forum and I’ll help.  

Now, I admit that I wouldn’t attempt to do a payroll program on the 17bii+, and the lack of scientific 
functions would make this calculator inappropriate for many members of this community. Nevertheless, I 
think it is great that an application designed to solve equations can, in this case, be used for some general 
purpose programming tasks.  

HP calculators are great!  

Source Don Shepherd 

http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=712 

 

Another tip from Don Shepherd on using the S (solve for) function 

 

The S Solver function lets you take a separate path depending upon which variable you are solving for. 
Take the quadratic formula, for example. There are normally two solutions to a quadratic equation, lets 
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call them X1 and X2. This Solver equation lets you input values for variables A, B, and C, then solve for 
either X1 or X2. 

 

 QUAD: 0L(D:SQRT(SQR(B)-4AC))+ 
       IF(S(X1):(-B+G(D))/(2A)-X1: 
                (-B-G(D))/(2A)-X2) 

 

( )( )( )
( ) ( )( ) ( )

( )( ) ( )

: 0 : 4

1 / 2 1

: / 2 2

:

QUAD L D SQRT SQR B A C

S X B G D A X
IF

B G D A X

æ ö÷ç ÷ç ÷ç ÷ç ÷÷ç

⋅ - ⋅ ⋅ +

- + ⋅ -

ø- -ç ⋅ - ÷è

  (1) 

 
( )( ) ( )

( )( ) ( )

4

if solving for X1:

/ 2 1

else

/ 2 2

end if

B G D A X

B G D A X

D B A C

-

= - ⋅ ⋅

+ ⋅ -

- - ⋅ -

  (2) 

This equation also uses the trick to pre-calculate the common expression “D” and then to multiply the 
result of the L() by zero so that it gets executed but does not affect the result. The IF() block is 
straightforward and contains two branches depending on whether we solve for X1 or for X2. Both use the 
value of “D” 

 

 

I'll discuss two things: ending a sigma loop early, and using the S (solving for) function. 

 

Don Shepherd on Ending a Loop Early 

According to the Technical Applications guide, you can't. But user Mike Ingle made me aware of a 
method to do this many years ago, and it works very well in limited situations where you don't need to do 
further processing after you exit the loop. You achieve this by using the following logic. Within the loop, 
test for a condition that would normally cause you to leave the loop early. If the test is true, store (via the 
Lfunction) the value of interest (normally the loop index but it might be something else) in a menu 
variable and then do a divide by 0 or Log(0) to force the equation to error terminate. When this happens, 
the calculator beeps and SOLUTION NOT FOUND is displayed. But you can then RCL the variable that 
you stored the value of interest in. Sometimes you might want to store two values in two variables, like I 
do below in the Solver equation for the Happy number, the subject of the RPN programming contest at 
HHC 2017. 
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See this link for the Happy equation (post 29): http://www.hpmuseum.org/forum/thread-908...ng+contest 

09-19-2017, 12:23 AM (This post was last modified: 09-19-2017 07:34 PM by Don Shepherd.)  

Post: #29 

 

Don Shepherd  
Senior Member 

Posts: 483 
Joined: Dec 2013  

 

RE: HHC 2017 RPN Programming contest information and results thread  

Never having used a 41, I wanted to implement the problem using the 17bii solver. Here is the equation: 

Code: 

HAPPY:HAP+CYC+ 
ANS=SIGMA(I:1:100:1: 
L(N:SIGMA(J:0:LOG(NUM):1: 
SQ(MOD(IDIV(NUM:10^J):10)))) 
+L(NUM:G(N))+ 
IF(NUM=1 OR NUM=4:L(HAP:NUM)+L(CYC:I)/0:0)) 

 
This is not a normal solver equation, it takes advantage of the fact you can exit a loop by inducing an 
error in the calculation (divide by 0 works well) after saving whatever values you want in variables that 
you can then RCL. So, to run this, enter your desired number to test and press NUM. Then press ANS 
(solve for ANS). After a few seconds it will beep and display SOLUTION NOT FOUND. Just RCL 
HAP (4=unhappy, 1=happy) and RCL CYC for the number of cycles.  

 

 

 

 

Another example of leaving a loop early is this 17b Solver equation that finds the prime factors of a 
number. This equation is much faster than the prime factorization equation in the Technical Applications 
guide. Enter the number you want to factor as N. Then solve for FACT. If n is prime, it will just say 
FACT=number, otherwise it will find the first factor and display SOLUTION NOT FOUND. RCL FACT 
to see the factor that was found. Then press FACT to find the next factor, and RCL as before when it 
beeps. On the last prime factor found, it won't beep, that is the signal that it is done. 

 

 
PRIMEF:IF(MOD(N:2)=0:L(FACT:2)+L(N:N/2)/0:sigma(I:3:SQRT(N):2:IF(MOD(N:I)=0:L(FACT:I)+L
(N:N/I)/0:0))+N)-FACT 
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: 2 0 : : 2 : / 2 / 0

: 3 : : 2
 :

: : 0 : : : / / 0
:

: 0

MOD N L FACT L N N

I SQRT N
PRIMEF IF FACT

NMOD N I L FACT I L N N I
IF
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