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Sometimes curves shall be plotted so that they represent a point moving along the curve at constant speed. 
Such curves may be simply relating one y  coordinate to each x  value (like ( )siny x= ) or they may be 
parametric curves which relate both, x  and y , to a parameter p . Parametric curves may have multiple y  
values for the same x  value. An example of such a curve is a circle. These curves are defined in parameter 
space as a function of a parameter p . Here p  is an arbitrary parameter which may be linked to a physical 
parameter (like time, angle or distance), but this is not required. For each value of the parameter p  there is 
one value for x  and another value for y . Functions describe the relations ( )x p  respectively ( )y p . 

Using Analytical Derivatives 
We use the following parametric curve, which describes a circle: 

 ( )sinx p=  , (1) 

 ( )cosy p=  . (2) 

The parameter p  ranges from 0  to 2 p⋅  before the curve starts to repeat itself. 

 

Figure 1: Plot of the parametric function x=sin(p) and y=cos(p). 

If we want to plot a motion along such a curve we need the general expression for the velocity: 

 
ds

v
dt

=  . (3) 

An expression for the small distance ds  determined from its horizontal and vertical components  dx  and 
dy  was given by Pythagoras as 

 2 2ds dx dy= +  . (4) 

In order to find dx  and dy  as a function of pwe differentiate the two equations describing the curve: 



 ( )cos
dx

p
dp

=  ,  and  ( )sin
dy

p
dp

= -  . (5) 

Solving for dx  and dy  yields: 

 ( )cosdx p dp= ⋅  , and  ( )sindy p dp= - ⋅  . (6) 

Substituting dx  and dy  into the expression for the distance ds  produces 

 ( ) ( )2 2
cos sinds dp p p= ⋅ +  . (7) 

Finally we insert ds  into the equation for the velocity so that we can find the required increment dp  in the 
parameter space for a given velocity and time step dt . The time step dt  can be chosen so that we obtain a 
nice resolution of the curve. It must then be kept constant during the plotting operation - we are not talking 
about Einstein and time warping here. With (7) the velocity becomes 

 
( ) ( )2 2

cos sindp p p
v

dt

⋅ +
=  . (8) 

Noting that 2 2sin cos 1+ =  we obtain the simple result 

 dp v dt= ⋅  . (9) 

For this example case we see that we could also use a constant angular step (in fact p is the circumferential 
angle). However, if we change the equation for y  to ( )cos 1 2y p= ⋅  we will obtain uneven steps for dp . 

 

General Approach 
If we do not have analytical derivatives we can use the same approach but have to calculate the local 
derivatives by finite differences. This means we approximate for example dy dp  by the quotient 

( ) ( )( ) ( ) ( )( )y p y p p y p p p p p pD D = + D - - D + D - - D . This equation is called a “central 
difference” because the gradient is determined from the symmetrical pD  variation of p  around the 
center point p . It is more accurate than e.g. a “forward difference” which would evaluate the gradient by 
stepping only by p+D  in the positive p  direction. On the other hand the central difference requires two 
evaluations of the function ( )y p  in addition to the current value, while the forward difference requires 
only one. The accuracy of the numerical approximation depends on the chosen step size pD  which should 
be “sufficiently” small. However, if pD  is too small, numerical errors in the differences and the division 
may become critical. 

 

Using the numerical gradients we obtain for dx  and dy : 

 
x

dx dp
p

D
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D
 ,  and  

y
dy dp

p

D
= ⋅

D
 . (10) 

And for the distance 
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The expression for dp  can then be written in the general form 
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 . (12) 

It describes the step size dp  in the parameter space which corresponds to a time step dt  with the constant 
speed v  (which corresponds to the given distance ds v dt= ⋅ ). 

Note 1 

The algorithm can also be used to plot non-parametric functions of the form ( )y x . In this case we simply 
replace the parameter :p x=  in equation (12) and thus we obtain the following expression for the step 
size dx  
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Plotting the sine curve at constant speed we would obtain 

 
( )21 cos

v dt
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x

⋅
=

+
 . (14) 

 

Figure 2: Required step size for plotting the sine curve at constant speed. 

Note 2 

If both derivatives dx dp  and dy dp  are zero at the same time, then no motion in x-y-space will occur 
when p  is varied (see equation (11)). This situation corresponds to a singularity at point p  and the basic 



plotting algorithm described below will hang. A similar problem occurs when the derivatives become 
infinite, i.e., one or both curves have a vertical asymptote. 

One solution is to select an arbitrary new value close to the current p , say 2p p p= + D  and evaluate 

( )2 2x x p=  and ( )2 2y y p= at this new parameter value. Then the distance ds  between ( ),x y  and 

( )2 2,x y  can be determined from (4) and a new value for the distance pD  can be selected until ds  equals 
the prescribed value v dt⋅ . As the distance ds  may be rather sensitive with respect to a variation of p  
close to a singular point, a relaxation technique may be necessary to update pD  in a monotonic 
converging manner. 

Implementing a Plotting Algorithm 
A simple plotting algorithm could use the following integration scheme (there are more accurate schemes 
available which are more complex and take more time): 

1) We start at 0t = , 0p = , select a time step dt  and a velocity v . Note that for constant velocity 
the distance travelled during each time step is also constant ds v dt= ⋅ .  

2) The coordinates from the two defining equations for x  and y  are calculated and we plot the point 
at ( ),x y . 

3) Next we determine the gradients dx dp  and dy dp . We can use finite differences x pD D  and 
y pD D  if no analytical derivatives are available. We check the gradients for being at a singular 

point. If this is the case, the calculation of dp  in step 4) must be changed accordingly. 

4) Now we calculate dp  from the equation (12) above (using the current value for p . 

5) We can now advance to the next time step: we assign t t dt¬ +  and p p dp¬ + . 

6) We repeat the cycle with step 2) until the desired end condition (e.g. a final time endt  or a final 
parameter endp ) has been reached. 

 


