GSX-80 under CP/M 2.2

Martin Hepperle, March 2020

The “Graphical System Extension” (GSX) system was never very popular
in the world of CP/M 2.2. Digital Research supported it on Intel 8080 and
Zilog Z-80 based systems only for a relatively short time and then it faded away
from the public view. Only relatively few computer systems actually made use of it,
most notably the Amstrad/Schneider computers, but already with CP/M-Plus. Similarly,
only few software developers adopted the second implementation for CP/M-86.

However, GSX formed an essential component of the “Graphical Environment Manager” (GEM) —
its “Virtual Device Interface” (VDI) is essentially an enhanced GSX. While less successful on the PC
platform, GEM and its VDI were widely spread through the implementation for the Atari ST family.

Background

Most early microcomputers used terminals for input and output. In most cases these were connected
through a serial interface. Typically, these terminals could display text and some of the more
sophisticated terminals were able to show graphics. Later, when memory became cheaper, the terminal
capabilities were built into the computers themselves. Usually a video board carried the required
memory to buffer the screen content in text and graphics modes.

Each manufacturer developed his own hardware configuration and software had to be adapted to the
hardware. Various sets of control sequences existed even for simple text terminals. Thus, the software
was closely linked to the available hardware. When it came to graphics, the situation was even more
diffracted. A bit mapped display needed a completely different software driver than a vector-based
display. Similarly, raster printers and pen plotters required specific driver software.

In the early years, these drivers were built directly into the application software. Often, specific
installer programs were used to patch control codes into the application programs. Later, the device
specific parts were moved to driver libraries and each program came with a large set of drivers for
displays, printers and plotters. Often, the main program would fit on a single diskette and the driver
libraries would spread over 10 or more diskettes. Of course, each manufacturer developed his own in-
house driver interface.

In the mainframe world similar problems existed. The “Graphical Kernel System” (GKS) was an
attempt to standardize the application programming interface with a strong focus on graphics, but also
supporting text-based user interfaces through cursor positioning and character attributes.

The application programmer would write his application only for a single high-level interface and an
intermediate software layer, the GKS Kernel, would translate these positioning and drawing
commands through another interface to the low-level device drivers. These would interface directly to
the final input and output hardware.

Thus, application programs would be portable between systems. The user would obtain drivers for his
system components from the hardware vendor and could run the portable programs without the need
for adaptation. Replacing a display or printer device would simply mean replacing the appropriate
driver.

After many years of development (starting in 1976), GKS became an international standard in 1985
(ISO and DIN). While its first implementations were designed for high level languages like
FORTRAN or Pascal, it was not limited to these languages.



A Graphical Kernel System for Microcomputers

The complete GKS standard was rather large and thus not very useful for small microcomputers of the
era, which typically came with 64 KB of RAM or even less. Before GKS was finalized, Graphics
Software Systems Inc. (GSS) and Digital Research (DR) developed a simplified system, which fit into
this limited memory space while leaving room for the application programs. Already in 1982, Digital
Research offered the GSX-80 system in form of the software products GSS-KERNEL (the core
system), GSS-PLOT (a higher level subroutine library) and GSS-4010 (a Tektronix terminal
emulation).

By the end of 1983, a cooperation between Digital Research and TeleVideo lead to the software
product “DR Draw” — an adaptation of TeleVideo’s “TeleDraw” program. In the same year, Digital
Research published GSX-86 for CP/M-86 on Intel-based computers available.

Not many CP/M-80 systems relied on GSX-80 as a graphics interface and supplied display drivers. In
1984, TeleVideo offered the portable TPC-1 which was advertised with GSX-80. Two GSX screen
drivers were available for the BBC Microcomputer with a Z-80 second processor extension.

Using the advanced CP/M-Plus operating system, the Schneider/Amstrad CPC and PCW 6128
“Joyce” systems were offered with GSX drivers as were the Epson QX-10 and NCR Decision Mate V.

Using GSX under CP/M 2.2

GSX is loaded together with your application program. The core system GDOS acts as an interface
layer between your application program and a device-dependent driver. The application program
communicates with the GDOS through a specific BDOS call which must be supplied with a function
code and corresponding arrays of input and output parameters.

DRI provided a program GENGRAF.COM, which prepends a loader for the GDOS (contained in
GSX.SYS) to your COM program. This loader brings the GDOS into memory, installs a BDOS
interface, reserves memory for the first driver found in ASSIGN.SYS, loads it, moves your application
back to address 100H where it belongs and finally starts it. This loader adds 380y bytes to your
program.

After GENGRAF has been applied once to your program, it is not needed for running your program.
Only GSX.SYS must be present on the application disk.

Whenever you re-compile your COM program, you must apply GENGRAF again. If your program is
not relocatable but compiled for a fixed end address (like Turbo Pascal COM programs, which by
default stretch to the upper end of the TPA), you have to make sure that the end address is lowered to
make room for the GSX system, including the largest driver you want to support. This may need some
trial and error (the GSX.SYS file is about 4 Kbytes and a device driver adds between 8 and 12 Kbytes
to this). The GSX system may need up to 18 KB including the largest Epson printer driver. If you only
use display drivers, the memory needs are more like 12 KB. GSX is only loaded temporarily —
memory is released when your program terminates.

If you forget to attach GSX with the GENGRAF program, all BDOS calls to GSX will return with an
error code and the return-arrays will contain undefined values. In addition, the call to OPEN
WORKSTATION will not display the GSX copyright banner shown in Figure 1.

GSX-80 1.1 01 Oct 83 Serial No 5000-1232-654321

Copyright (C) 1983
Digital Research, Inc. A11 Rights Reserved

Figure 1: A copyright banner is shown when the loader is executed and has loaded the first
driver declared in ASSIGN.SYS. An error message is displayed if the driver is not
found.



»

running
applying Application
GENGRAF.COM

GSX.SYS Program

o

Figure 2: GENGRAF.COM attaches the loader for GSX.SYS to your program.
FFFF,

Open

- BIOS calls
Workstation GIOS device driver

» typical GSX BDOS calls

10-15KB

ASSIGN.SYS

BDOS
and
GSX calls

Application Program

B
Page Zero

0000,

Figure 3: Similar to the BDOS and BIOS, the GDOS and GIOS are loaded above the Transient
Program Area (TPA). BDOS and GSX function calls are redirected through the
GDOS to filter out the calls to GSX.




Device Drivers

In a text file named ASSIGN.SY'S, an ID number is assigned to each driver. This file contains a table
with pairs of ID number and associated driver file name. It must contain at least one driver and each
driver must have a unique ID. Digital Research’s documentation for GSX describes the syntax.

GSX maintains a buffer area to load and swap drivers as needed. The first driver in the ASSIGN.SYS
file defines the size of this buffer area. When a different driver is requested (e.g. after previewing a
graph on screen before printing it), the previous driver is replaced by the new driver.

10 @:DDHP7470
01 @:DDHP2627

30 @:DDMF

Figure 4: Example ASSIGN.SYS file with the large plotter driver listed first, a terminal driver
and a Metafile driver. The “@” character indicates that the driver shall be loaded
from the current disk drive — it could also be replaced by a drive letter like “A”.

The number of available GSX-80 device drivers for CP/M 2.2 was not too bad - Table 1 lists all the
drivers, which I could find as well as the ones [ wrote myself.

File Name Size |Device Author

DDHP7470.PRL |11 KB|HP 7470 plotter Graphic Software Systems
DDHP7220.PRL |10 KB|HP 7220 plotter Graphic Software Systems
DDHI3M.PRL 9 KB |Houston Instruments Hiplot DMP-3/4-443 plotter Graphic Software Systems
DDHI7M.PRL 10 KB|Houston Instruments Hiplot DMP-6/7 plotter Graphic Software Systems
DDVRET.PRL 11 KB|VT-100 with Digital Engineering Retro-Graphics' Graphic Software Systems
DDGEN2.PRL 12 KB|Digital Engineering Retro-Graphics' Gen. II Graphic Software Systems
DDTS803.PRL 8 KB |TeleVideo TS 803, TS 803H and TPC-1 TeleVideo Systems, Inc.
DDSHINWA.PRL |12 KB|Seikosha matrix printer Digital Research Inc.
DDMX80.PRL 12 KB|Epson MX-80 matrix printer type III, or with Graftrax Plus|Digital Research Inc.
DDFXHRS8.PRL |15 KB|Epson FX-80 8 pin hi-res matrix printer Digital Research Inc.
DDFXLR7.PRL 12 KB|Epson FX-80 7 pin lo-res matrix printer Digital Research Inc.
DDFXLRS.PRL 12 KB|Epson FX-80 8 pin lo-res matrix printer Digital Research Inc.
DDANADXM.PRL|12 KB|Anadex DP-9501 and DP-9001A matrix printer Digital Research Inc.
DDCITOLR.PRL |12 KB|C.Itoh 8510A Low Resolution matrix printer Digital Research Inc.
DDCNTXM.PRL |12 KB|Centronics 351, 352, and 353 matrix printer Digital Research Inc.
DDDS180.PRL 12 KB|Datasouth DS180 matrix printer Digital Research Inc.
DDLAS0.PRL 12 KB|DEC LAS50 matrix printer Digital Research Inc.
DDLA100.PRL 12 KB|DEC LA 100 matrix printer Digital Research Inc.
DDOKI84.PRL 12 KB|OKIDATA Microline 84 step 2 matrix printer Digital Research Inc.
DDHP2627.PRL 8 KB |HP 2627 graphics terminal Martin Hepperle
DDHP2648.PRL 8 KB |HP 2648 graphics terminal Martin Hepperle
DDHPGL.PRL 12 KB|HP-GL metafile Martin Hepperle®
DDMF.PRL 7 KB |GEM metafile Martin Hepperle
DDMFA.PRL 8 KB [MFA computer system, special video card Martin Hepperle
DDPS.PRL 9 KB |Postscript metafile Martin Hepperle
DDPX8.PRL 7 KB |Epson PX-8 Martin Hepperle
DDXTEK.PRL 8 KB |Tektronix graphics terminal Udo Munk

Table 1: These drivers have been examined for this document.

From today’s perspective, the variety of the existing drivers was limited. Only a few terminal drivers
and no metafile drivers exist. Therefore, I started to write some for my own hardware needs. A very
helpful starting point was the DDXTEK driver, written by Udo Munk, which served as a template.

! “Retro-Graphics” were add-on boards produced by Digital Engineering. They were available for the Lear Siegler ADM-
3A/3A+ and the Digital Equipment VT-100 terminals. These boards provided Tektronix 4010 graphics emulation with a
screen buffer RAM of 128 KB.

% This is a modified variant of the driver developed by Graphic Software Systems.

4



Each of my own drivers consists of a small assembler module and a major FORTRAN module. By
minimizing the usage of FORTRAN runtime library routines and limiting the implementation to basic
functions, the final drivers have an acceptable size. Of course, writing drivers completely in assembler
would produce smaller code, but development would have been much more time consuming for me.

Driver Properties via Turbo Pascal

The following simple Turbo Pascal 3.01 program queries and displays the capabilities of a device as
defined by its driver. It is necessary to reserve some memory above the program, which can be done
with the End option in the Compile menu of Turbo Pascal. Setting the end address to A000y leaves
enough space for GSX and the largest drivers on my 62 KB CP/M system.

The following table of device properties has been produced by running this program on the GSX-80
drivers for CP/M 2.2.

Program GSX;

* Purpose: query characteristics of a GSX device *)
* Compile: set end address to $A000 *
* Add GSX: GENGRAF GSX

* Creator: Martin Hepperle, 2020

: ..30] of Integer;

: Array[1..200] of Integer;

: Array[1..200] of Integer;
intout : Array[1l..200] of Integer;
ptsout : Array[1l..200] of Integer;
pblock : Array[l..5] of Integer;
w,h

Procedure GSX_Init;

(* set up pointer array ¥)
Begin
pblock[1]
pblock[2]
pblock[3]
pblock[4]
pblock[5]
E

Addr(contr1[1]);
Addr(intin[1]);
Addr(ptsin[1]);
Addr(intout[1]);
Addr(ptsout[1]);

Procedure GSX_OpenWS ( DriverID : Integer );

(* open workstation *)
Begin
contr1[1] :
contrl1[2]
contr1[4]
intin[1]
intin[2]
intin[3]
intin[4]
intin[5]
intin[6]
intin[7]
intin[8]
intin[9]
intin[10]

1;

(M

10;
DriverID;

el el el el el el

Bdos (115,Addr (pblock[1]1));

WriteLn('x-resolution ', (intout[1]+1));
WriteLn('y-resolution ', (intout[2]+1));
WriteLn('pixel width in micrometer ',intout[4]);
WriteLn('pixel height in micrometer ',intout[5]1);

w = 1.0*Cintout[1]+1)*intout[4];

h := 1.0*Cintout[2]+1)*intout[5];

WriteLn('O=precise scale supported ',intout[3]);
WriteLn('number of characters sizes ',intout[6]);
WriteLn('number of T1ine types ',intout[7]);




WriteLn('number of 1ine widths ,intout[8]);

WriteLn('number of marker types ,intout[9]);

WriteLn('number of marker sizes ,intout[10]);
WriteLn('number of fonts ,intout[11]);
WriteLn('number of patterns ,intout[12]);
WriteLn('number of hatch styles ,intout[13]);
WriteLn('number of colors ,intout[14]);
WriteLn('number of GDPs supported ,intout[15]);
WriteLn('l=color capability ,intout[36]);
WriteLn('l=text rotation capability ,intout[37]);
WriteLn('l=area fill capability ,intout[38]);
WriteLn('l=read cell array capability ',intout[39]);
WriteLn('number of colors ,intout[40]);
WriteLn('number of locator devices ,intout[41]);
WriteLn('number of valuator devices ,intout[42]);
WriteLn('number of choice devices ,intout[43]);
WriteLn('number of string devices ,intout[44]);
WriteLn('workstation type ,intout[45]);
WriteLn("'minimum character size ,ptsout[2]);

WriteLn('maximum character size ,ptsout[4]);

WriteLn("minimum Tine width ,ptsout[5]);

WriteLn('maximum T1ine width ,ptsout[7]);

WriteLn('minimum marker size ,ptsout[10]);
WriteLn('maximum marker size ,ptsout[12]);
E

Procedure GSX_CloseWsS;
(* close workstation *)
Begin
contr1[1] :=
contr1[2] :=
Bdos(115,Addr
E

2
0
(

pblock[11));

GSX_Init;
GSX_OpenWS(1);
GSX_CloseWs;

E

Figure 5: A simple program to list the characteristics of a GSX-80 driver.



Properties of GSX Drivers for CP/M 2.2

Property Driver PS MF  HP2627 HP2648 XTEK PX8 MFA VRET GEN2 TS803° HP7470 HP7220 | HI3M HITM
x-resolution | 23171 | 23171 512 720 1024 480 480 1024 640 640 10300 15200 1881 2800

y- resolution | 32767 | 32767 390 360 768 64 432 780 420 240 7560 10000 1401 1970

pixel width in micrometers 9 9 420 352 198 480 252 198 381 375 25 25 125 127
pixel height in micrometers 9 9 420 352 195 480 252 195 381 750 25 25 125 127
O=precise scale supported 0 0 1 1 1 1 1 1 1 0 0 0 0 0
number of character sizes 0 0 4 4 4 1 1 4 0 1 0 0 5 5
number of line types 6 6 9 9 5 3 1 5 8 8 7 7 9 9
number of line widths 1 1 1 1 1 1 1 1 1 1 1 1 1 1
number of marker types 6 5 5 5 5 5 5 5 5 8 5 5 6 6
number of marker sizes 1 1 4 4 1 4 4 1 1 1 0 0 5 5
number of fonts 1 1 1 1 1 1 1 1 1 1 5 5 1 1

number of patterns 0 0 0 0 0 0 0 0 120 8 0 0 0 0

number of hatch styles 0 0 0 0 0 0 0 0 0 8 0 0 0 0
number of predefined colors 2 256 8 2 2 2 2 2 7 2 2 8 6 8
number of GDPs supported 0 0 0 0 0 0 0 0 4 1 0 0 0 1
color capability 0 1 1 0 0 0 0 0 0 0 1 1 1 1

text rotation capability 1 1 1 1 0 0 0 0 1 0 1 1 1 1

area fill capability 1 1 0 0 0 0 0 0 1 0 0 0 0 0

read cell array capability 0 0 0 0 0 0 0 0 0 0 0 0 0 0
number of colors 2 256 8 2 2 2 2 2 0 2 0 0 0 0

number of locator devices 0 0 1 1 1 0 0 1 1 1 1 1 0 0
number of valuator devices 0 0 0 0 0 0 0 0 0 0 0 0 0 0
number of choice devices 0 0 0 0 0 0 0 0 0 0 0 0 0 0
number of string devices 0 0 1 1 1 1 1 1 1 1 0 0 0 0
workstation type 4 4 2 2 2 2 2 2 2 2 2 2 2 2

minimum character size’ 327 327 588 637 427 | 4096 531 588 390 934 260 197 327 233
maximum character size | 16385 | 16385 2353 2549 640 | 4096 1062 2479 | 25356 934 16380 16381 5239 3726
minimum line width 45 71 64 46 32 68 68 32 51 51 3 2 17 12
maximum line width | 11585 7071 64 46 32 68 68 32 51 51 3 2 17 12
minimum marker size 327 327 672 728 341 1024 607 504 780 350 347 262 327 133
maximum marker size 8192 | 16385 2689 2913 341 | 8192 | 2427 504 780 350 16380 16381 5239 2129

Table 2: Properties of metafile, display and plotter drivers.

3 The properties of the TeleVideo TS 803 driver were extracted from the binary, because it cannot be executed on my CP/M system (it uses numerous RST 28,; and 30y).

* This driver supports the ,,super mouse” of the TS 803H system.
> Character sizes and the following properties are reported in the NDC system — the drivers contain them in device units.




Property

ANADXM

CITOLR

CNTXM

DS180

LAS0

LA100

OKI84

MX80

SHINWA

FXHRS

FXLR7

FXLRS

x- resolution 576 1088 528 600 1152 1056 824 456 640 960 480 480

y- resolution 680 680 670 672 680 672 672 456 672 1368 672 672

pixel width in micrometers 338 186 385 338 176 192 246 353 317 212 423 423
pixel height in micrometers 352 352 352 352 352 352 352 296 352 176 352 352
O=precise scale supported 0 0 0 0 0 0 0 0 0 0 0 0
number of characters sizes 12 12 12 12 12 12 12 12 12 12 12 12
number of line types 6 6 6 6 6 6 6 6 6 6 6 6
number of line widths 1 1 1 1 1 1 1 1 1 1 1 1
number of marker types 5 5 5 5 5 5 5 7 5 5 5 5
number of marker sizes 12 12 12 12 12 12 12 12 12 12 12 12
number of fonts 1 1 1 1 1 1 1 1 1 1 1 1

number of patterns 6 6 6 6 6 6 6 6 6 6 6 6
number of hatch styles 6 6 6 6 6 6 6 0 6 6 6 6
number of predefined colors 2 2 2 2 2 2 2 2 2 2 2 2
number of GDPs supported 1 1 1 1 1 1 1 1 1 1 1 1
color capability 0 0 0 0 0 0 0 0 0 0 0 0

text rotation capability 1 1 1 1 1 1 1 1 1 1 1 1
area fill capability 1 1 1 1 1 1 1 0 1 1 1 1

read cell array capability 0 0 0 0 0 0 0 0 0 0 0 0
number of colors 2 2 2 2 2 2 2 2 2 2 2 2

number of locator devices 0 0 0 0 0 0 0 0 0 0 0 0
number of valuator devices 0 0 0 0 0 0 0 0 0 0 0 0
number of choice devices 0 0 0 0 0 0 0 0 0 0 0 0
number of string devices 0 0 0 0 0 0 0 0 0 0 0 0
workstation type 0 0 0 0 0 0 0 0 0 0 0 0

minimum character size 386 386 390 390 386 390 390 575 390 192 390 390
maximum character size 4626 4626 4681 4681 4626 4681 4681 6899 4681 2300 4681 4681
minimum line width 57 30 62 55 28 31 40 72 51 34 68 68
maximum line width 57 30 62 55 28 31 40 72 51 34 68 68
minimum marker size 386 386 390 390 386 390 390 575 390 192 390 390
maximum marker size 4626 4626 4681 4681 4626 4681 4681 6899 4681 2300 4681 4681

Table 3:

Properties of printer drivers.



A Simple CBASIC Demonstration Program

The following CBASIC-80 program is simply named G.BAS. It displays polylines, markers, and text. It
can be compiled, linked and finally GSX can be attached with the following command sequence:

CB80 G
LK80 G
GENGRAF G

REM DEMONSTRATION PROGRAM FOR
REM CBASIC GRAPHICS EXTENSIONS
REM

REM Martin Hepperle, 2020

REM

%INCLUDE GRAPHCOM.BAS

DIM MX(10),MY(10)

REM Test Drivers 1, 2
FOR G =1 T0 2
PRINT "Testing driver ";G

GRAPHIC OPEN G

ASK DEVICE X.DIM,Y.DIM
PRINT "Aspect ratio is ";X.DIM;" x ";Y.DIM

SET BOUNDS Y.DIM,X.DIM
SET BEAM "ON"

REM outer frame
pLOT (0,1),(1,1),(1,0),(0,0)

SET CHARACTER HEIGHT 0.02
GRAPHIC PRINT AT (0.05,0.95): "GSX Driver Test"

SET CHARACTER HEIGHT 0.05

GRAPHIC PRINT AT (0.05,0.85): "5 %"
PLOT (0,0.85),(1,0.85)

PLOT (0,0.90),(1,0.90)

SET CHARACTER HEIGHT 0.1

GRAPHIC PRINT AT (0.05,0.5): "10 %"
PLOT (0,0.5),(1,0.5)

PLOT (0,0.6),(1,0.6)

MX(0)=0.25 : MY(0)=0.
MX(1)=0.50 : MY(1)=0.
MX(2)=0.75 : MY(2)=0.

SET CHARACTER HEIGHT
SET JUSTIFY 0.0,0.5

FOR T=1 TO 6
SET LINE STYLE T
MAT PLOT 2: MX, MY

SET MARKER HEIGHT O.

SET MARKER TYPE T

SET LINE STYLE 1

MAT MARKER 2: MX,MY

SET JUSTIFY 0.0,0.5

GRAPHIC PRINT AT (0.8,MY(2)): STR$(T)




SET JUSTIFY 1.0,0.5

SET TEXT ANGLE 51.5/57.5

GRAPHIC PRINT AT (0.2,MY(0)): STR$(T)
SET TEXT ANGLE 0

MY (0)
MY (1)
MY (2)

NEXT T
PRINT "Done."

GRAPHIC CLOSE
NEXT G

END

Table 4: This simple test program G.BAS uses an ASSIGN.SYS file having devices with IDs 1 and 2.
Another CBASIC program which was used for testing was DEMOGRAF which came on the CBASIC-80
compiler diskette.

The following sections present some details for some selected drivers.

HP 7470 Plotter (DDHP7470.PRL)

Digital Research provided this driver together with the GSX-80 system. Unfortunately, the driver is
hardwired to the PUN:/RDR: devices (usually a serial port). The serial interface of the plotter is
programmed to use the ENQ/ACK handshaking. There is no option to configure it for output to a file (see
next section).

If no plotter is attached to the serial port (PUN:/RDR:), input and output can be redirected to the console
and some handshaking input must be provided to avoid hanging the program due to the missing response
from the plotter.

STAT RDR:=TTY:

STAT PUN:=TTY:

The call to OPEN WORKSTATION outputs configuration commands for the serial interface.

[ESC] . C

This first sequence activates the plotter in case it is in a Y-cable eavesdrop configuration.

[ESC].I1I80;5;6:

The second sequence sets the block size to 80, the characters for ENQ to 5 and for ACK to 6.

IN; [ENQ]

This following sequence initializes the plotter and sends an ENQ character. It then expects an ACK
character from the plotter®. Pressing the key satisfies the handshake requirement of the driver too.
Obviously, the driver does not test the reply from the plotter — it continues when just something is sent
back. The next sequence sets up default line type and character properties.

% The ENQ/ACK handshaking is a standard protocol for many HP devices and terminals. It injects ENQ characters at regular
intervals into the output stream. It then expects an ACK character to continue. This is very similar to the XON/XOFF protocol,
only using different characters and inverse logic as the sender asks the receiver for its ready state.

10



LT;CS0;SS;S10.15,0.15;

This block of initialization commands is followed by the actual plotting commands.

A final call to CLOSE WORKSTATON homes the pen and expects an ACK to continue. Again, pressing
the key resumes operation. It then stops the plotter operation in an eavesdrop configuration.

PU;PAO,0; [ENQ]
[ESC1.)

HP-GL Graphics Language (DDHPGL.PRL)

This driver was developed by extending the DDHP7470.PRL driver supplied by Digital Research. For this
purpose, the original driver was disassembled and modified. The “new” driver writes the HP-GL
command stream to a file named HPGL-1.PLT. To properly flush the file, output must be finished with a
call to CLOSE WORKSTATION. Multiple image files can be created within a single program run. In this
case, the digit in the file name is incremented each time a new file is created by an OPEN
WORKSTATION call. You cannot use GSX input or locator functions when using this driver.

Tektronix 4014 Graphics Terminal (DDXTEK.PRL)

This display driver was written by Udo Munk in a mix of assembler and FORTRAN. Tektronix output is
supported by the Unix Xterm program and by Teraterm under Windows. I used his sources as a template
for writing my own drivers.

Matrix Printer Drivers (e.g. DDFXHRS.PRL)

These drivers use the “banding” technique to print the graphics using a small memory buffer. They create
a temporary file and process it many times to create the printout. Unfortunately markers are created from
bitmapped low-resolution data and look somewhat crude. Similarly, text is rendered with a built-in bitmap
font defined by a matrix of only 8x8 pixels. Objects made from lines are printed out fine, though.

MFA Terminal Card (DDMFA.PRL)

This driver was written by myself. It supports a special graphics card which was developed in 2019 for the
older German MFA “Microprocessor for Education”. This modular 19-inch rack mountable system is
based on the Intel 8085 CPU and capable of running CP/M 2.2.

Epson PX-8 (DDPXS8.PRL)

Another driver written by myself. It provides the basic graphics functions for the LCD screen of the Epson
PX-8. Due to the high width-to-height ratio of the screen, it is not so practical to run applications
developed for other devices. Nevertheless, the system independency can be demonstrated even with such
an unusual aspect ratio. The driver uses the PX-8’s escape sequences and can position hardware text only
on the relatively coarse row/column grid. Because you can configure the PX-8 with a RAM and User-
BIOS of “arbitrary” size, the end address of Turbo-Pascal programs has to be adjusted accordingly. The
A000y setting mentioned above works on my PX-8 with a RAM disk of 9 KB and 512 Bytes of User-
BIOS.

11



HP 2627A Color Graphics Terminal (DDHP2627.PRL)

This driver was written by myself. It supports marker sizes and text rotation, as well as more line styles
and 8 predefined colors.

Note that these old terminals had a small I/O buffer and this driver uses the ENQ/ACK protocol to control
the data flow. This means that it sends out an ENQ character at regular intervals and expects an ACK
character back from the terminal when it is ready to process more input.

HP 2648 A Monochrome Graphics Terminal (DDHP2648.PRL)

Again, a driver written by myself. Like the driver for the 2627A, it supports marker sizes and text rotation
as well as more line styles. It also uses the ENQ/ACK protocol to control the data flow.

The following sequence of pictures shows some of the output screens produced by the DEMOGRAF
program and the DDHP2648 driver on a real HP 2648A terminal.

18 PERCENT

15 PERCENT

Figure 6: Text Size. The HP 2648A uses a Figure 7: Locator. The graphics cursor can
scalable, pixel based font. be controlled by the keyboard.

Figure 8: Text Alignment. Figure 9: Marker Size.

12



Figure 10: Marker Type. Figure 11: Polyline.

Figure 12: Line Styles. The HP 2648A provides Figure 13: Text Rotation. The HP 2648A is
9 line styles. able to rotate text in steps of 90
degrees.

Figure 14: Viewport. Figure 15: Window.

13



Figure 16: Thank you for watching. Figure 17: The text output of DEMOGRAF
can be found in the Alpha plane.

Postscript Metafile (DDPS.PRL)

This driver was written by myself. It writes a stream of Postscript pages to a file. An initial OPEN
WORKSTATION command creates a new file “GSX.PS”. Any existing file is overwritten. Each
subsequent CLEAR WORKSTATION command ejects the current page and starts a new page. Finally, a
CLOSE WORKSTATION command is required to properly terminate and close the file.

The output file contains a minimum set of DSC comments to allow embedding as an Encapsulated
Postscript file into documents, paging in Ghostscript or importing into graphics programs like Corel Draw.

GSX Driver Test
5% :
5
® 4
10-% 3
™ | 2
o 1

§

N

Figure 18: Output of G.BAS generated with DDPS.PRL and imported into Corel Draw.
14



%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 596 834
%%Creator: GSX-80, Martin Hepperle
%%Pages: (atend)

%%BeginProlog

%%EndProlog
%%Page: 1 1

%%Page: 2 2

%%Trailer
%%Pages: 2
%%EOF

Figure 19: Structure of the generated Postscript file.

GEM Metafile (DDMF.PRL)

This driver was written by myself. It writes a stream of GSX records to a file. An initial OPEN
WORKSTATION command creates a new file “GSX.GEM”. Any existing file with this name is
overwritten. A final CLOSE WORKSTATION command is required to properly terminate and close the
file. It is advisable to send only a single graph to the metafile, otherwise the pages will be overlaid.

The resulting metafile can be imported e.g. into Corel Draw on a modern Windows PC.

GSX Driver Test
5% :
5
6 4
10%. -
4 2
3 1
2
1

Figure 20: Output of G.BAS generated with DDMF.PRL and imported into Corel Draw. Better than
nothing, but some attributes are obviously lost in translation — e.g. markers, line styles
and text orientation. However, they are contained in the metafile, so I blame this fault to
Corel Draw.

15



Note on some GEM Metafiles

For debugging, I used some of the clipart files which came with the DR Draw program. I noticed that
circles were always drawn twice. I discovered that the DR Draw files actually contained these circles
twice: the first instance was a using the GDP primitive “Circle”, while the immediately following instance
drew the same circle with the GDP primitive “Arc” with start and end angles of 0° respectively 360°.

16



Using GSX with FORTAN — A Tale of Two Libraries

If you don’t like BASIC or Turbo Pascal, you can also use FORTRAN to control GSX output devices.

Please use Microsoft FORTRAN Version 3.44 — all previous versions (including 3.4) have severe bugs,
especially when working with arrays and subroutine parameters (the version of the compiler can be read
from a listing generated with the /L option).

Low Level Interface GSXLIB

For interfacing directly to GSX, I have written a wrapper library which uses a small assembler routine to
call the actual GSX functions. More FORTRAN routines can be added to the library for supporting more
GSX functions.

I applied the following naming scheme loosely to the function names:

Character | Purpose

1 G = GSX or Graphics

2-3 Object to act on: WK = workstation, LN = line, MK = marker, TX = text

4-6 Action to perform: SET = set attributes or properties, PLT = plot, OUT = output

In order to reduce programming effort, some of the library subroutines set several properties for one type
of object (e.g. lines, markers) in a single call. These properties stay in effect until they are changed.

All x and y coordinates are in the GSX system’s NDC space, i.e. they range from 0 to 32767.

The GSXLIB library contains the following subroutines

Module | Subroutine Parameters Purpose
GSXWK | GWKOPN (ID) INTEGER*2 ID open workstation with ID
GSXWK GWKCLO none close workstation
GSXWK GWKCLR none clear workstation
GSXWK | GWKINQ (ISIZRC,SIZMM) INTEGER*2 ISIZRC(2) inquir ice dimension
’ REAL*4 SIZMM(2) inquire device dimensions
in pixels and millimeters
GSXLN GLNSET INTEGER*2 IWIDTH, ISTYLE, t propetties of lines
(IWIDTH, ISTYLE,ICOLOR) ICOLOR ’ set prope
GSXLN GLNPLT (IX0,IY0,IX1,IY1) INTEGER*2 IX0, IYO, IX1, plot a line
Iv1l
GSXMK | GMKSET (ISIZE,IMARK,ICOLOR) | INTEGER*2 ISIZE, IMARK, set properties of markers
ICOLOR
GSXMK | GMKPLT (IX,IY) INTEGER*2 IX, IY plot a marker
GSXTX | GTXOUT (IX,IY,CTEXT,ILEN) INTEGER*2 IX, IY, ILEN output a text strin
' ' INTEGER*1 CTEXT(100) p &
GSXTX | GTXSET(ISIZE, IDEGZ INTEGER*2 ISIZE, IANGLE t properties of text. anele in 1/1
STaoens ; ) N oEeE . ’ set properties of text, angle in 1/10

degrees

Additionally, the library uses an internal common block named “GSX$” for passing parameters through
the assembler routine to the GSX kernel.

Building the Library

To rebuild the library, you can use these commands:

17




m80 =gsxcal
80 =gsxwk
80 =gsxIn

80 =gsxmk
80 =gsxtx
1ib80 gsx1ib=gsxwk,gsx1n,gwsxmk,gsxtx,gsxcal, /E

Note that the order of the modules is important. The routine GsxcaL has to be added last to the library,
otherwise calls to GsxcaL in the Gsxwk, GSXLN, Gsxmk and GsxTx modules cannot be resolved and the library
would have to be searched twice in all L80 calls.

To compile and link your program GsxpRroG. For you can use the following command sequence:

80 =gsxprog
180 gsxprog/N,gsxprog,gsxlib/S, forlib/S,/E

gengraf gsxprog

High-Level Interface GLIB

Because the GSXLIB core library is very basic, I have written another higher level library, called GLIB.
This library makes use of the low-level library but provides more practical routines for setting up
viewports and windows, drawing axes and grids as well as providing vector text output. Usually, you
would use this library when writing real world programs. The routines provide a core for generating
technical graphs.

Hle Edit Setup VI-window Window Help Fle Edit Setup VT-window Window Help
) Viewport # - Viewport #2
= !
o "
o. 2 o .
K8 ) 9 ‘
@ p. \b( 0.0
i o She o [k -
b2 [hit
= e} E
o ) N X§
W 9 O ki
o// N
llo Waorld!00 ; v
0 0B LID4OM O] " Viewport #1 7\/\wDr(#4
- //O ello World
oY = [ Moyse Text
] @ o5 r e Text
N Q. / 23441.9%44
\O = i 1.2p44
o o Q- [ 1934
4:b S 7z spo 18 ) - e e
Q E N e Y Y Y AN AN N Y B A 1 [ i B
<7 & o
-
e
= _io

a) Teraterm Tektronix Window (DDXTEK.PRL).

18



B

llo World!g

%

iPHOM O]

OQ\

o

N
/l'J\
P

1Ti

| "
l EPSON EPSON [!

¢) Epson PX-8 Laptop (DDPXS8.PRL.

+ 4 Viewport §2
sl \ 1 \
15550 \
2y ”
> (3] <
; e o " dhe
M
g e bx- =
i o oS . /
= ‘\‘
o = O D /
s,
: i
Q0 3
2 D f'%Q' llo Worldl0.0 2 Viewport #1 jemport 44
5 008 LIPHOM Oflekprs b 7
S =~
s o = = 4 . o World
W = (o) % More Text
o D b} N
- o = © | Z Text
— — i C o . D 234412344
- 1y X g~ A
-\ C [®)
-G = ) ® 1434
w O NJ = \_ 103
- (:) 5 N 112
- L]
. o / %
- ; C
( C

d) Epson MX-80 Printer DDFXHRS.PRL.

Figure 21: Examples of the output generated by the two demonstration programs GDEMO1 and
GDEMO?2.

19



Usage

The GLIB library uses a scaling system based on the concept of a viewport and a window. Think of
drawing graphs on a sheet of paper. The paper corresponds to the full area of the output device.

The Viewport

The viewport defines the region of the paper to use for drawing. It is defined relative to the full size of the
paper. You can also think of this as a percentage of the paper space. A viewport defined by an x-range of

[0...1] and a y-range of [0.5...1.0] would cover the upper half of the output device. The default viewport

covers the horizontal x = [0...1] and the vertical range y = [0...1], i.e. the full page.

The Window

The window defines your user coordinate (UC) system for the viewport. Most drawing routines use this
system. If you want to plot days on the horizontal axes and hours on the vertical axis, you could define a
window of x =[1...365] and y = [0...24]. This UC system is mapped into the viewport.

Paper or Screen
1.0
0.90 240
WINDOW
uc
1.0
0.50 0.0 365.0
VIEWPORT
A
0.25 0.85
00O >
0.0 1.0

Figure 22:Setup of a Window for plotting hours versus days inside a Viewport [0.25...0.85,
0.5...0.9]. For demonstration, some extra margin has been added inside the Window, so
that the origin of the green UC system is slightly offset.

Setting up your own UC system allows you to call GMOVE and GDRAW with day and hour numbers for
the X and Y parameters.

After having plotted into this viewport, you could define another viewport on the same page, e.g. with an
x-range of [0...1] and a y-range of [0.0...0.5]. Setting up the same window scaling and calling your
plotting routine again would now produce the same plot as before, but in the lower half of the paper.

A typical GLIB program consists of this sequence (see Gbemo1.For and GDEMO2 . FOR):

GINIT
One or more blocks of:
GVIEW
GWIND
... plotting routines ...
GCLOSE

GINIT and GcLosE are mandatory.

20



If not noted otherwise, all routines in the GLIB use the UC system. Only a few parameters for which a
fixed size seems to be more desirable are given in millimeters (for example tick lengths and text heights).
Depending on output device and device driver, these dimensions may not be accurate. Similarly, angles
may be distorted if the output device has non-square pixels or the driver reports incorrect dimensions.

Also note that FORTRAN passes parameters by address (reference). By design, some routines update their
input parameters, most notably the string output functions. This allows for easy writing a sequence of
strings. Keep this in mind, when you reuse these parameters in the calling program.

The names of all routines in the GLIB library start with a ‘G’. The names of internal common blocks start
with “G$” to avoid collision with common blocks in your program.

The library contains the following subroutines (in alphabetical order):

Subroutine Module | Parameters
GARC(X,Y,R,PHIO,PHI1,DPHI) GARC REAL*4 X,Y center point
REAL*4 R radius ] (dea)
D I 1 arc. REAL*4 PHIO start angle eg
raw a polygonal arc REAL*4 PHI1 end angle (deg)

REAL*4 DPHI

angular step (deg)

GCHAR(X,Y,ICHR,SIZE,ANGLE) GCHAR REAL*4 X,Y starting point
INTEGER*2 ICHAR character code (32...126)
Output a single character using a built-in vector font. REAL¥*4 SIZE character size in millimeters
. . . REAL*4 ANGLE baseline angle (deg),
X and Y are updated to the baseline starting point of 0=right, 90=up
the next character. ’
GCLEAR GCLEAR |nhone
Clear the output device screen.
GCLIP(LCLIP) GCLIP |LOGICAL*1 LCLIP clip flag,
.TRUE. enable clipping
Switch clipping to viewport on/off. -FALSE. no clipping
GCLOSE GCLOSE |none
Close the output device.
Must be called after all GLIB routines.
GDRAW(X,Y) GDRAW |REAL*4 X,Y point
Draw a line to the given point.
GHATCH(X,Y,N,ANGLE,DIST) GHATCH |REAL*4 X() ordinates of corner points
REAL*4 Y() coordinates of corner points
Hatch the interior of a convex polygon with straight INTEGER*2 N number of points in X and v
k polyg g REAL*4 ANGLE angle to x-axis in degrees
lines at an angle. REAL*4 DIST distance between Tines
in millimeters
GINIT(ID) GINIT INTEGER*2 ID the GSX device ID
(ASSIGN.SYS)
Select and open the device.
Must be called before any other GLIB routine.
Sets up defaults:
- full-page viewport
-a UC system [0.0...1.0] in x and y.
GMARK (X, Y) GMARK |REAL*4 X,Y point
Plot a marker of the current type at the given point.
GMOVE (X, Y) GMOVE |REAL*4 X,Y point
Move pen to the given point.
GNUM(X, Y, SIZE,ANGLE, VAL ,NDIG,NALIGN) GNUM REAL*4 X,Y starting point of text,

Output a REAL number. The X, Y point is updated to
the baseline starting point of the next character.

Alignment: NX, NY

REAL*4 SIZE
REAL*4 ANGLE

REAL*4 VAL
INTEGER*2 NDIG

updated to end point
character size in millimeters
angle of baseline (deg),
O=right, 90=up

number to write

number of digits behind

21




NY: the decimal point_
2 +----- + INTEGER*2 NALIGN 2-digits NX NY: alignment
1|ABC|
0 +--—--- +
NX: 0 1 2
GPOLY(X,Y,N) GPOLY REAL*4 X() ordinates of corner points
REAL*4 Y() coordinates of corner points
* s .
Draw a closed polygon through the points. INTEGER*2 N number of points in X and Y
GRECT(X0,Y0,X1,Y1) GRECT REAL*4 X0 ordinate of corner point 1
REAL*4 YO coordinate of corner point 1
D tangle by 2 int REAL*4 X1 ordinate of corner point 2
raw a rectangle by 2 corner ponts. REAL*4 Y1 coordinate of corner point 2
GSFONT(IFONT) GCHAR INTEGER*2 IFONT font number [1...2]
Load a new font from disk. Font #1 has Latin
characters, font #2 has Greek characters.
GSIZE (DEVXMM,DEVYMM) GINIT REAL*4 DEVXMM width in millimeters
REAL*4 DEVYMM height in millimeters
Inquire device size.
GSMARK (SIZE,NSTYLE,NCOLOR) GSMARK | REAL*4 SIZE marker size in millimeters
INTEGER*2 NSTYLE marker style,
Set size, style and color for subsequent markers : 1=dot .
> Sty q : INTEGER*2 NCOLOR pen color index,
1=first
GSPEN(WIDTH,NSTYLE,NCOLOR) GSPEN REAL*4 WIDTH pen width in mi1]imeters
INTEGER*2 NSTYLE pen style, l=solid
Set pen width, style and color for subsequent lines. INTEGER™2 NCOLOR gggigglor index,
GTEXT(X,Y,T,NLEN, SIZE,ANGLE,NALIGN) GTEXT |REAL*4 X, Y position of start point
INTEGER*1 T(LEN) character strin%
. . ASCII codes in [32...126]
Dravy a tex.t string. X and Y are updated to the baseline INTEGER*2 NLEN number of characters
starting point of the next character. REAL*4 SIZE size in millimeters
REAL*4 ANGLE baseline angle in degrees,
: . O=right, 90=up
Ahgn’f‘r\l(e.nt. NX, NY INTEGER*2 NALIGN 2—d'ig'it§ NX NY: alignment
2 +----- +
1 |ABC]|
+
NX: 0 1 2
GVIEW(XLO,XHI,YLO,YHI) GVIEW REAL*4 XLO Teft edge in unit
REAL*4 XHI right edge in unit
Define the vi ot iti REAL*4 YLO bottom edge in unit system
cline the viewport position. REAL*4 YHI top edge in unit system
GWIND(XLO,XHI,YLO,YHI) GWIND REAL*4 XLO Teft edge of UC space
REAL*4 XHI right edge ofoC space
. . REAL*4 YLO bottom edge of UC space
Define UC system scaling for the current viewport. REAL*4 YHI top edge of UC space
GXALAB(X0,X1,YPOS,XSTEP,SIZE,ANGLE,NDIG) |[GAXLAB |REAL*4 X0 ordinate of start point
REAL*4 X1 ordinate of end point
Label a horizontal axis. REAL*4 YPOS position of axis Tine
REAL*4 XSTEP distance between_ticks
REAL*4 SIZE text size in millimeters
REAL*4 ANGLE text angle (deg)
INTEGER*2 NDIG number of digits behind the
decimal point
GXAXIS(X0,X1,YPOS,XSTEP,YTICK) GAXIS REAL*4 X0 start point
REAL*4 X1 end point .
Draw a horizontal axis. REAL*4 YPOS position of axis
REAL*4 XSTEP distance of tick marks
REAL*4 YTICK tick Tength in millimeters
GXRAST(X0,X1,XSTEP,YO0,Y1) GRAST REAL*4 X0 ordinate of start point
REAL*4 X1 ordinate of end point
Draw a erid of vertical lines REAL*4 XSTEP distance between lines
g : REAL*4 YO start point of each line
REAL*4 Y1 end point of each Tine
GYALAB(YO,Y1,XPOS,YSTEP,SIZE,ANGLE,NDIG) GAXLAB |REAL*4 YO start point
REAL*4 Y1 end point )
Label a vertical axis. REAL*4 XPOS position of axis
REAL*4 YSTEP distance of ticks.
REAL*4 SIZE text size in millimeters
REAL*4 ANGLE text angle in degrees

INTEGER*2 NDIG

number of digits behind the
decimal point

22




GYAXIS(YO,Y1l,XPOS,YSTEP,XTICK) GAXIS REAL*4 YO start r_JO‘i nt
REAL*4 Y1 end point
Draw a vertical axis. REAL*4 XPOS position of axis
REAL*4 YSTEP distance of tick marks
REAL*4 XTICK tick Tength in millimeters
GYRAST(YO0,Y1,YSTEP,X0,X1) GRAST REAL*4 YO coordinate of start point
REAL*4 Y1 coordinate of end_point
Draw a erid of horizontal lin REAL*4 YSTEP distance between lines
Wa grid ot horizo ©s. REAL*4 X0 start point of each 1ine
REAL*4 X1 end point of each Tine
Routines for internal usage Module | Parameters
GAUTO (MIN,MAX,MAXDIV,LOW,HIGH,STEP) GAXIS REAL*4 MIN start point of range
REAL*4 MAX end point of range L
Determine “nice” bounds and step size for a given INTEGER*2 MAXDIV maximum number of divisions
etermine nice - bou L Step size for a give REAL*4 LOW Tower bound (output)
range without too many subdivisions. REAL*4 HIGH upper bound (output)
Useful for defining and labeling axes. REAL*4 STEP interval (outputg
GDRAWC(X,Y) GDRAWC |REAL*4 X,Y point
Draw a line to the given point.
Clips to viewport.
Used internally by GDRAW routine.
GMOVEC(X,Y) GMOVEC |REAL*4 X,Y point
Move pen to the given point.
Clips to viewport.
Used internally by GMOVE routine.
GIDRAW(IX,IY) GIDRAW |INTEGER*2 IX,IY point in NDC system
Draw a line to the given point in normalized device
units (NDC).
Used internally by GLIB routines.
GIMOVE(IX,IY) GIMOVE |INTEGER*2 IX,IY point in NDC system
Move the pen to the given point in normalized device
units (NDC).
Used internally by GLIB routines.
GNUMST (VAL ,NDIG, FMT,NLEN) GNUM REAL*4 VAL number to convert
INTEGER*2 NDIG digiE? af;er decimal point
. INTEGER*1 FMT(20) a buffer for result
Convert a REAL number to a string. INTEGER*2 NLEN  length in FMT(L:LEN)
Used internally by GLIB routines.
GCHSIZ(CCHR,SIZE,DX,DY) GCHSIZ |INTEGER*1 CCHR character code (32..126)
REAL*4 SIZE height in millimeters
Determine the di . £a charact REAL*4 DX width of character in uC
ctermine the dimension ot a character. REAL*4 DY height of character in ucC
Used internally by GLIB routines.
GTXSIZ(T,NLEN,SIZE,DX,DY) GTXSIZ |INTEGER*1 T(LEN) text string
INTEGER*2 NLEN Tength of text.
Determine the di . £a stri REAL*4 SIZE height in millimeters
ctermine the dimension ot a string. REAL*4 DX width of string in ucC
Used internally by GLIB routines. REAL*4 DY height of string in UC
GRAST(X0,Y0,X1,Y1l,XSTEP,YSTEP,NSTEPS) GRAST REAL*4 X0 or'd'inqte of start poi nt
REAL*4 YO coordinate of start point
D id of llel 1i REAL*4 X1 ordinate of end point
raw a grid ot paraliel ines. REAL*4 Y1 coordinate of end point
Used internally by GLIB routines. REAL*4 XSTEP horizontal distance to shift
REAL*4 YSTEP vertical distance to shift

INTEGER*2 NSTEPS number of steps to perform

Building the Library

To compile the modules for the library you can use the g1ib.sub file with susvIT or manually issue these

commands:

m80 =gcons
f80 =ginit
f80 =gclose

80 =gclear




=grect
=garc
=gwind
=gview
ECEVE
=gaxlab
=gspen
=gsmark
=gmark
=grast

=gnum
=gtext

=gchsiz
=gchar
=gmovec
=gdrawc
=gclip
=gmove
=gdraw
=gimove
=gidraw
=gtrafo
=gpoly
=ghatch

The library must be built in this order to avoid unresolved references:

1ib80
glib=ginit,gclose,gclear,gcons,grect,garc,gwind,gview,gaxis,gaxlab
grast,gnum,gtext,gchar,gmove, gdraw,gmovec,gdrawc,gclip,gimove,gidraw
gchsiz,gspen,gsmark,gmark,gtrafo,gpoly,ghatch

/E

Finally, the demonstration programs can be generated by these commands:

f80 =gdemol

180 gdemol/N,gdemol,glib/S,gsx1ib/S, forlib/S,/E
gengraf gdemol

Shown for gdemo1, the corresponding commands are used for gdemo2 and gdemo3.

24



Internal Transformations

As a note to myself, I list the most common transformations (using internal variables from GLIB.FI)

to
NDC ucC mm
from
UC.x=XWO0+ (NDCx - DX - XV0)/SX
UC.y=YWO0+ (NDC.y - DY - YV0)/SY mm.x = NDC.x * DEVXMM * SX /
NDC DEVSIX
difference (e.g. for lengths or height) mm.y = NDC.y * DEVYMM *SY /
AUC.x = ANDC.x/SX DEVSIY
AUC.y = ANDC.y/SY
mmx = ((UCx - XWO0)*SX + DY +
YV0)* DEVXMM/ DEVSIX
NDC.x = DX + XV0 + (UC.x-XW0)*SX mm.y = ((UC.y - YW0)*SY + DY +
NDC.y=DY + YVO0 + (UC.y-YW0)*SY YV0)* DEVYMM/ DEVSIY
ucC difference (e.g. for lengths or height) difference (e.g. for lengths or height)
ANDC.x = AUC.x*SX Amm.x = AUC.x*SX* DEVXMM/
ANDC.y = AUC.y*SY DEVSIX
Amm.y =AUC.y*SY* DEVYMM/
DEVSIY
UC.x =XWO0 + (DEVSIX * mm.x /
DEVXMM - DX - XV0)/SX
UC.y=YWO + (DEVSIY * mm.y/
NDC.x =DEVSIX * mm.x / ( DEVYMM - DY - YV0)/SY
DEVXMM#*SX)
mm NDC.y = DEVSIY * mm.y/ difference (e.g. for lengths or height)
(DEVYMM*SY) AUC.x =DEVSIX * dAmm.x /
(DEVXMM*SX)
AUC.y = DEVSIY * Amm.y /
(DEVYMM*SY)
UC.x = XWO0 + (DEVSIX * frame.x - DX
-XV0)/SX
UC.y = YWO + (DEVSIY * frame.y - DY
-YVO0)/SY
Frame
with mm to frame
(frame.x = mm.x / DEVXMM)
(frame.y = mm.y / DEVYMM)

25




GEMVIEW

This is a small utility program to read and output GEM metafiles. You can use the driver DDMF to create
a GEM metafile or use one created e.g. by DR Draw or other programs (DR Draw for CP/M-80 or CP/M-
86 — DR Draw for MS-DOS uses a different format with extension PIX). With GEMVIEW, you can later
send this file to a printer or translate it into plotter commands.

You start GEMVIEW with a command line like:

GEMVIEW -d:2 -r -o0:2 c:file.gem

or, producing the same result:

GEMVIEW -c

-d:2 -r -0:2 c:file.gem

Parameter | Description Default

file the name of the metafile to read; without extension, “GEM” is assumed. GSX.GEM

—c read all parameters from a second command line to work around a known Turbo none

cmdTine | Pascal 3.01 for CP/M-80 command line length bug. Prompts with a >’.

“d:n n=1: set Debug level /, outputs one line for each record read. 0

) n=2: set Debug level 2, outputs each record with its arguments.

-0:7d outputs to the device with the given id, as defined in ASSIGN.SYS. 1
n=1I: redirects PUN: and, LST: to the console and to a file GSX.LOG.

-r:n n=2: redirects PUN:, LST: and, CON: to a file GSX.LOG. 0
Any read to RDR: is satisfied with an ACK character.

-s:n scale horizontal x-coordinates by integer n. 1

-t:n scale vertical y-coordinates by integer . 1

-X:n shift horizontal x-coordinates by integer 7. 0

-y:n shift vertical y-coordinates by integer 7. 0

Table S5: Available optional parameters.

Notes:

GEMVIEW first tries to open the file with the given name. If this file does not exist, it appends
‘GEM’ to the name and tries again before failing.

GEMVIEW is written in Turbo Pascal 3.01A. Unfortunately, Turbo Pascal for CP/M-80 has a bug
with command line handling — it garbles the command line after 32 characters. If you want to
specify many options, your command line may exceed this limit. In this case, you can shorten the
name of your GEM metafile and omit the extension “GEM” to minimize the length of the
command line.

For command options up to 127 characters, use the —c option to enter the parameter list in a
second command line. Wait until the GSX header has been displayed and the prompt >’ appears.
GEMVIEW does not handle all GSX record types. Metafiles generated with later versions of
GEM may contain many more record types than specified by the initial specification for GSX.
GEMVIEW uses the header information to shift the coordinate values so that they fall into the
positive integer range. Some metafiles contain incorrect size information in their header. As a
result, some points may fall outside of the valid range [0...32767]. This typically results in
partially reflected long lines across the image. In this case, you can try using the —x and —y options

26




to add integer offsets to the values in the metafile. Similarly, you can use the —s and —t options to
scale the values e.g. by 2, as long as the integer range is not exceeded.

e The option —r:1 allows for testing drivers which communicate with RDR:, PUN: or LST: (for
example, the plotter driver DDHP7470). With the option —1:2 CON: is captured too, so that no
output is written to the screen (except for the initial GSX message).

By TYPEing the GSX.LOG file, you can replay the commands to the terminal.
Alternatively, you can capture the output using a terminal program like TeraTerm.

Using GSS-Plot and GSS-Kernel under CP/M 2.2

The library GSS-Kernel provides a GKS system while GSS-Plot is a high level graphics library which
offers routines for drawing line, bar and pie charts. Both use the GSX driver system.

Finally, after many years, diskette images and sources for these two products have become available.
Sources for the Tektronix terminal emulator GSS-4010 have also surfaced as part of a backup file tree.

GSS-Kernel and GSS-Plot came with a set of include files for the programming languages PL/I, Pascal
and Fortran as well as one example file for each language.

In case of PL/I the application for producing an executable program using GSS-Plot is described below. A
similar procedure is required for creating applications with GSS-Kernel. In addition to the GSS-Kernel or
GSS-Plot diskette another disk with the GSX system is required (JRItORIE, and selected
device drivers).

Compiling

First the user’s main program must be compiled. The example for PL/I is called JEyataRam. It should be
compiled with PL/I version 1.4. My tests were not successful with version 1.0.

A>PLI PLOTEXP

PL/I-80 Compiler Version 1.4
Serial No. 3032-0000-001130 A11 Rights Reserved
Copyright (c) 1980-1982 Digital Research, Inc.

COMPILATION OF: PLOTEXP
%include 'IPLTPLI.PLI';

NO ERROR(S) IN PASS 1
NO ERROR(S) IN PASS 2

CODE SIZE = 00AO
DATA AREA = 0392
FREE SYMS = 2C55
END COMPILATION

Notes:
e PL/I produces a file of 2KB.

27



Linking
Next the user’s object module must be linked with the graphics interface for the selected language and the
GSS-Plot library. The linker should be version 1.3A. My tests were not successful with version 1.0.

A>LINK PLOTEXP[A],GRAFPLI,PLOTLIB[S]

LINK 1.3A
PLILIB RQST EXAMPL 0100 GPINI 0209 XRANGE
. long Tist of references

X$STTIN C52B  XS$$TTOT C52E  XSTTIN  A268  X$TTOT
X$AD C537 X$36 C57E  X$SK C592

ABSOLUTE 0000
CODE SIZE 4761 (0100-4860)
DATA SIZE 0C59 (4B7C-57D4)
COMMON SIZE 031B (4861-4B7B)
USE FACTOR 2A

@I\ WWEN is a thin, language dependent interface layer, similar object modules exist for Fortran

flcrarror . ReL JERNREREIR(GRAFPAS . REL)R

e The option is required to avoid memory overflow.

e The option [§Y] is required to use as a library, for including only the required modules
and resolving all internal links)

o [BTH produces a file [JEg3(HE of 22 KB.

Combining with the GSX System File

Finally, the file must be embedded into the GSX system with the program which
is part of the GSX system.

A>GENGRAF PLOTEXP

GENGRAF 1.0 15 Nov 82 Serial No 5000-0000-000292
Copyright (C) 1982

Digital Research, Inc. A11 Rights Reserved

Notes:
o AqIML requires the file EUENE.
o  From KGR it produces a new g2 GReN of 24 KB.

28



Running the Final Executable

A>PLOTEXP

GSX-80 1.0 15 Nov 82 Serial No 5000-0000-000292
Copyright (C) 1982
Digital Research, Inc. A11 Rights Reserved

HP 2648A Driver Version 1.0
Copyright (C) 2020 by Martin Hepperle

. output of graphics terminal escape sequences ...

Notes:
o A file [BI{IWNE with at least one device driver is required to define the output device(s).
e The appropriate gl driver(s) must be present, as specified in .
Beyond CP/M

There were also versions of GSS graphics software for the AT&T UNIX PC. The core package GSS-
DRIVERS for the AT&T UNIX PC included drivers for these devices:

AT&T UNIX PC Model 7300 Display,
AT&T Model 455 Letter Quality Printer,
AT&T Model 470 Graphics Printer,
Hewlett-Packard 7470A Plotter,
Hewlett-Packard 7475A Plotter,

Epson MX~80 Printer with Graphtrax Plus,
Virtual Device Metafile (VDM).

Additional drivers were available in a separate GSS-DRIVERS+ pack:

Diablo C150 Ink Jet Color Printer,

Epson MX-100 Printer,

HIPLOT DMP-29 Plotter,

NEC Model 7730 Letter Quality Printer,

NEC Model 3550 Letter Quality Printer,

Okidata Microline 92 Printer,

Okidata Microline 93 Printer,

Okidata Mieroline 84 Printer with Step 2 Support,
Summagraphics Summatablet,

VT100 Terminal with Retro-Graphics Card.

Most of these drivers are probably identical to the CP/M drivers, except for AT&T-specific drivers and the
additional VDM driver. Companion products like GSS-TOOLKIT provided tools like a metafile
interpreter.

29



Furthermore, GSS also developed a set of GKS-based graphics products for IBM to support the IBM-PC
family with a device independent plotting system. These products became available under the IBM label
“Professional Graphics series” in 1984 and comprised

IBM Graphics Development Toolkit,

IBM Personal Computer Graphical Kernel System (GKS-Kernel),

IBM Personal Computer Plotting System (further development of GSS-PLOT),

IBM Personal Computer Graphical File System (GKS-Metafile),

IBM Graphics Terminal Emulator (similar to GSS-4010, Tektronix 4010, 4012, 4014, ADM-3A).

Of course, the supported hardware consisted of IBM devices only:

IBM Color Graphics Adapter, 640x200x2, 320x200x4,
IBM Enhanced Graphics Adapter, 320x200x16, 640x200x4, 640x200x16, 640x350x16,
IBM Game/Joystick Adapter with IBM-PClJr. Joystick
IBM Color Printer, 8 colors,

IBM Graphics Printer, 2 colors (black&white)

IBM PClr, 640x200x4

IBM PClJr, 320x200x16

IBM PClr, 160x200x16

IBM 7372 Plotter, 6 pens

IBM 7371 Color Plotter, 2 pens

IBM Virtual Device Metafile (VDM)

The program languages supported were

IBM BASIC Compiler,

IBM C 2.0 Compiler (Lattice C),

IBM Fortran 2.00 Compiler (Microsoft Fortran),
IBM Professional Fortran Compiler (RM-Fortran).

30



MICROCOMPUTERS and MINICOMPUTERS

Produce mainframe quality graphs with
GSS-PLOT plotting utility R
pROES

and
Developers can create presentation
and report quality graphs!

GSS-PLOT
‘quaiity ine graphs, various bar graphs, e charts. histograms, scatter charts,
line charts

popular.low cost, nigh quaity plotters from Watanabe, Hewiett Packard.

Houston Instruments, Sirabe and Tekironi

GSS-PLOT is computer and graphics devics independant. Most major
ystems III supported, including AT-11,™

RS 1M o 23000 MPE = G55, it

CP/M GRAPHICS

Your ticket to success.

Toks el i piciueommpues sppicaions with Digital Research complete
am tal Research. system you can Eovr dzv:lnpmm  and execution
IM mi}nkeys hic future. WMl!ryourE:n
T e et | St oo OEM ae e b ko
ogwcmm'd : 'u'."csx.um Bwhicter s ok e %&)sl:?s';ghoiﬂn ey et
uters wi programs ve.
i e ic Grove, California 93950.

microcomputer history.

We also supply GSS-KERNEL™ a library of
graphic commands for drawing lines, polygons, and
text according to the emerging ISO standard: GKS.
{Graphical Kernel System). We also offer GSS-PLOT™
alibrary designed to let you create bar graphs, pie
charts, histograms, and scatter plots. Both of t! E
libraries can be linked with CBASIC* Compiler,
Pascal/MT +™ PL/1 and FORTRAN on 8- and
16-bit systems. When you put it all together, the

CA/M 83 i
Exposition in San Francisco, January 21-23, 1983. For

“The constors of CPIM™

graphic peripherals. Ch:

s0ive your graphics application problems. At GSS we wan! you o suc-

‘ceed the first ime you use graphics.
(@SS also offers a Siggraph CORE package.

1 ant ASX. 114 arerogisteved vagemart of Digtal Equipment Corp. WPE 5.3
rega

mah o Howiat Pachae 0

The BIG name in small computer graphics.

GSS-KERNEL GSS-PLOT

Figure 23: Digital Research advertisement for GSX based software products.

The Digital VT100 Is Now
A Graphical VT100

That's right. What many
professionals considertobe
the best alphanumerics ter-
minal around, the VT100" is
better Awhole lot better

The reason? Retro
Graphics® A breakthrough that transforms the VT100
into a high-performance graphics display terminal.
With multiple character sizes. Dot-dash Lines. Point
plotting and vector drawing. Selective erase for
quick, easy updating of the graphics display. In short,
complete emulation of Tekironix® 4010 Series ter-
minals. Which means complete compatibilty with
most existing graphics software, including Tektronix
Plot 10" and ISSCO’s DISSPLA® and TELLAGRAF®

Retro-GraphicsVT100 graphics are all displayed
onthe 12" (diagonal) green-toned screen at 640 x 480
resolution.
ina bright, easy-to-read display even in high ambient
light environments,

Reh'o-Graplucs. Added Value
From Digital E:

2 Of course, agreat idea
like Retro-Graphics always
starts with a good one. And

the VT100—featuring 96 up-
perflower case ASCI char-
acters, up to 132 characters
per line, numeric and function keypad, detachable
keyboard and a wide variety of screen customizing
features—is avery good idea,indeed.

Together, they become one exceptional idea
called the Retro-Graphics VT100. The perfect gra-
phics addition for business, scientific and engineer-
ing design applications, regardless of whether you
want to maintain DEC product continuity or are just
looking for the highest quality graphics terminal at a
cost hundreds less than the competition.

A Good Idea IsWhere You
Find It. And When.
Where you'll find the Retro-Graphics VT100, up

d running, is at Info '80, New York Coliseum, New
TorkCity. October 6-8. Lookfor it at National Computer

Not ngual Equipment, mind you. Digital Engi-
neering. A somewhat smaller but very bright group
Wwho are pioneers in rewo-fit graphics. Adding valu
is nothing new for them, Just ask any of the thousands
of Lear Siegler ADM-3A and 3A+ owners whose
Dumb Terminals® became graphics

Booth #2132, Beginning in Novem-
ben the Retro-Graphics VT100 will be sold through
NCC as well as by selected other Digital Engineering
distributors,

For more information on how and where to order,
call or write Digital Engineering directly. As for when

thanks to Retro-Graphics.

50 Berc
Saexamens Ch 5814
16 5205800

WK 910 2672000

to order, we sugge:

wmuniestons Go

zsnww venue
ford, CT 06902

ey

=== DIGITAL ATIONAL
= ENGINEERING COMPUTER i

Figure 24: Digital Engineering advertisement for the Retro-Graphics board for the VT-100.

31



VT100 GRAPHICS
IN 4.4 MINUTES!

From Selanar [
Of Course! :

SIMPLY ADD A CARD

CALLUS!
Let us show you how to get the most from your
nputer terminals.

(408) 727-2811

ISISELANAR INTERNATIONAL 2403 De La Cruz Blvd. Santa Clara, CA., 95050
Alte Landstrasse 5 D 8012 Ottobrunn Telefon (089)606071-72 Telex 5216290

Figure 25: ISI Selenar advertisement for their Graphics board for the VT-100.

References

Langhorst, Fred E., Clarkson, Thomas B. III: “Realizing Graphics Standards for Microcomputers”, p.
256-268, BYTE Magazine, February 1983.
“GSX Graphics Extension, Programmers Guide”, Digital Research Inc., 2™ ed., September 1983.
“CBASIC Compiler Language, Graphics Guide”, Digital Research Inc., 1* ed., May 1983.
Munk, Udo: CB80 and GSX software files, downloadable under
https://www.autometer.de/unix4fun/z80pack/index.html [retrieved February 2020].
Kotulla, Martin: “GSX ohne Geheimnisse”, Teil 1, p. 80-84, c’t 12, 1986; Teil 2, p. 116-123,¢’t 1,
1987; Teil 3, p. 98-105, ¢’t 2, 1987; Teil 4, p. 124-127, ¢’t 3, 1987.
Licher, Eckhard, von Massenbach, Thomas: “CP/M 2 lernt dazu”, Teil 1, p.124-135, ¢’t 1, 1987; Teil
2,p.78-85, ¢t 2, 1987.
Russ, Dave: “GSX — The Graphics Interface”, 80-Bus News, V3NS5, September-October 1984.
“FORTRAN-80 User’s Manual”, Microsoft, 1979.
“FORTRAN-80 Reference Manual”, Microsoft, 1979.
] “Utility Software Package Reference Manual”, Microsoft, 1981.
] Elliott, John: http://www.seasip.info/Cpm/gsx.html [retrieved June 2020].
] Chaudry, Gaby: http://www.cpm.z80.de/source.html [retrieved June 2020].
]
]

“TeleVideo TPC-1 System Reference Manual”, TeleVideo, Inc., 1983.
“TeleVideo TS 803H User’s Manual”, TeleVideo, Inc., 1985.

e Fred Langhorst, the author of the BYTE article, was DRI’s product manager for GSX.
32



In 1988, the address of the co-developers of GSX and products like GSS-KERNEL was

Graphic Software Systems, Inc., 25 117 Southwest Parkway, Wilsonville, OR 97070-9600, USA
They also provided implementations of GKS for the PDP-11 under RT-11, RSX-11M and Unix.
The driver DDGDC.PRL shows a banner, but then hangs when loading into a generic CP/M 2.2
system. It probably tries to initialize (nonexistent) hardware with the 7220 graphics chip. The
company “miro” later also produced graphics cards for IBM-PC compatibles and Apples, focusing
on the professional market.

GSX-80/GIOS 1.3 for miroGDC 31-AUG-83
Copyright (C) 1983

miro Datensysteme GmbH A1l Rights Reserved

During disassembly of some drivers supplied by DRI (DDMX80.PRL and DDHP7470.PRL) 1
noticed that these came with an appended copyright notice block of 256 bytes. This block is not
displayed and serves no functional purpose. It is simply appended to the driver file.

Thanks go to the late Emmanuel Roche for proofreading this document and providing comments
and historic insight. As this is a living document, I am responsible for any remaining and newly
introduced errors.

33



BYTE Magazine, p. 59, December 1983:

Hot Tip

I've heard from three sources now
that Digital Research is no longer
supporting CP/NET. It claims it will
have something to replace it Real
Soon Now. The company has also
abandoned several previously an-
nounced modules of GSX, its graph-
ics support package that was an-
nounced with such fanfare at Com-
dex last spring. This has not amused
several equipment manufacturers
whod invested considerable time in
CP/NET and/or GSX.

34



