
1

END USER DISKETTE

ProgramVersionSerial#

NOTICE O
F LICENSE RESTRICTIONS

Program
(s) Copyright©

 Digital Research, Inc.

All software on th is diskette i s copyrighted and m
ay be used and

copied only under the term
s o f the Digital Research, Inc. End U

ser

License Agreem
ent. This diskette is serialized and m

ay be used only by

the regis tered user, and m
ay not be resold o r translated without the

consent of Digital Research, Inc. P.O
. Box 579, Pacifi c grove, Cali for-

nia. Disassembly of code is prohibited. Unauthorized reproduction,

transfer, or use of this m
aterial may be a criminal offense under Federal

and/or State law.

GSX-80 under CP/M 2.2

Martin Hepperle, March 2020

The “Graphical System Extension” (GSX) system was never very popular
in the world of CP/M 2.2. Digital Research supported it on 8080 and Z-80
based systems only for a relatively short time and then it faded away from the
public view. Only a few computer systems actually made use of it, most notably the
Amstrad/Schneider computers, albeit already with CP/M-Plus. Similarly, only few
software developers adopted the second implementation for CP/M-86.

However, GSX formed an essential component for the “Graphical Environment Manager” (GEM) –
its “Virtual Device Interface” (VDI) is essentially an enhanced GSX. While less successful on the PC
platform, GEM and its VDI were widely spread through the implementation for the Atari ST family.

Background

Most early microcomputers used terminals for input and output. In most cases these were connected
with a serial interface. Typically, these terminals could display text and some of the more sophisticated
terminals were able to show graphics. Later, when memory became cheaper, the terminal capabilities
were built into the computers themselves. Usually a video board carried the required memory to buffer
the screen content in text and graphics modes.

Each manufacturer developed his own hardware configuration and software had to be adapted to the
hardware. Various sets of control sequences existed even for simple text terminals. Thus, the software
was closely linked to the available hardware. When it came to graphics, the situation was even more
diffracted. A bit mapped display needed a completely different software driver than a vector-based
display. Similarly, raster printers and pen plotters required specific driver software.

In the early years, these drivers were built directly into the application software. Often, specific
installer programs were used to patch control codes into the application programs. Later, the device
specific parts were moved to driver libraries and each program came with a large set of drivers for
displays, printers and plotters. Often, the main program would fit on a single diskette and the driver
libraries would spread over 10 or more diskettes. Of course, each manufacturer developed his own in-
house scheme.

In the mainframe world similar problems existed. The “Graphical Kernel System” (GKS) was an
attempt to standardize the application programming interface with a strong focus on graphics, but also
supporting text-based user interfaces through cursor positioning and character attributes.

The application programmer would write his application only for a single high-level interface and an
intermediate software layer, the GKS Kernel, would translate these positioning and drawing
commands through another interface to the low-level device drivers. These would interface directly to
the final input and output hardware.

Thus, application programs would be portable between systems. The user would obtain drivers for his
system components from the hardware vendor and could run the portable programs without the need
for adaptation. Replacing a display or printer device would simply mean replacing the appropriate
driver.

After many years of development (starting in 1976), GKS became an international standard in 1985
(ISO and DIN). While its first implementations were designed for high level languages like
FORTRAN or Pascal, it was not limited to these languages.

2

A Graphical Kernel System for Microcomputers

The complete GKS standard was rather large and thus not very useful for small microcomputers of the
era, which typically came with 64 KB of RAM or even less. Therefore, Digital Research and Graphics
Software Systems Inc. developed a simplified system, which fit into this limited memory space while
leaving room for the application programs. In 1982, Digital Research offered the GSX-80 system in
form of the software products GSS-KERNEL, GSS-PLOT (a subroutine library) and GSS-4010 (a
Tektronix terminal emulation).

By the end of 1983, a cooperation between Digital Research and TeleVideo lead to the software
product “DR Draw” – an adaptation of TeleVideo’s “TeleDraw” program.

In the same year, Digital Research published GSX-86 for CP/M-86 on Intel-based computers
available.

Not many CP/M-80 systems relied on GSX-80 as a graphics interface and supplied drivers. In 1984,
TeleVideo offered the portable TPC-1 which was advertised with GSX-80. Two GSX screen drivers
were available for the BBC Microcomputer with a Z-80 second CPU extension and CP/M 2.2.

Using an advanced CP/M-Plus as an operating system the Schneider/Amstrad PCW “Joyce” systems
were offered with GSX drivers.

Using GSX under CP/M 2.2

GSX is loaded together with your application program. The core system GDOS acts as an interface
layer between your application program and a device-dependent driver. The application program
communicates with the GDOS through a specific BDOS call which must be supplied with a function
code and corresponding arrays of input and output parameters.

DRI provided a program GENGRAF.COM, which prepends a loader for the GDOS (contained in
GSX.SYS) to your COM program. This loader brings the GDOS into memory, installs a BDOS
interface, reserves memory for the first driver found in ASSIGN.SYS, loads it, moves your application
back to address 100H where it belongs and finally starts it. This loader adds 380H bytes to your
program.

After GENGRAF has been applied once to your program, it is not needed for running your program.
Only GSX.SYS must be present on the application disk.

Whenever you re-compile your COM program, you must apply GENGRAF again. If your program is
not relocatable but compiled for a fixed end address (like Turbo Pascal COM programs, which by
default stretch to the upper end of the TPA), you have to make sure that the end address is lowered to
make room for the GSX system, including the largest driver you want to support. This may need some
trial and error (the GSX.SYS file is about 4 Kbytes and a device driver adds between 8 and 12 Kbytes
to this). The GSX system may need up to 18 KB including the largest Epson printer driver. If you only
use display drivers, the memory needs are more like 12 KB. GSX is only loaded temporarily –
memory is released when your program terminates.

If you forget to attach GSX with the GENGRAF program, all BDOS calls to GSX will return with an
error code and the return-arrays will contain undefined values. In addition, the call to OPEN
WORKSTATION will not display the GSX copyright banner shown in Figure 1.

GSX-80 1.1 01 Oct 83 Serial No 5000-1232-654321
Copyright (C) 1983
Digital Research, Inc. All Rights Reserved

Figure 1: A copyright banner is shown when the loader is executed and has loaded the first
driver declared in ASSIGN.SYS. An error message is displayed if the driver is not
found.

3

Figure 2: GENGRAF.COM attaches the loader for GSX.SYS to your program.

Figure 3: Similar to the BDOS and BIOS, the GDOS and GIOS are loaded above the Transient
Program Area (TPA). BDOS and GSX function calls are redirected through the
GDOS to filter out the calls to GSX.

Device Drivers

In a text file named ASSIGN.SYS, an ID number is assigned to each driver. This file contains a table
with pairs of ID number and associated driver file name. It must contain at least one driver and each
driver must have a unique ID. Digital Research’s documentation for GSX describes the syntax.

COM
Application Program

COM
Application Program

applying
GENGRAF.COM

GSX Loader

GSX Loader

GSX.SYS

+

COM
Application Program

running
Application

Program

GDOS

+

BIOS

Page Zero

BDOS

GIOS device driver

GDOS

BDOS calls

BDOS
and

GSX calls

TPA

0100H

0000H

FFFFH

ASSIGN.SYS

Open
Workstation

typical
10-15KB

BIOS calls

Applicatioon Program

4

GSX maintains a buffer area to load and swap drivers as needed. The first driver in the ASSIGN.SYS
file defines the size of this buffer area. When a different driver is requested (e.g. after previewing a
graph on screen before printing it), the previous driver is replaced by the new driver.

10 @:DDHP7470
01 @:DDHP2627
30 @:DDMF

Figure 4: Example ASSIGN.SYS file with the large plotter driver listed first, a terminal driver
and a Metafile driver. The “@” character indicates that the driver shall be loaded
from the current disk drive – it could also be replaced by a drive letter like “A”.

The number of available GSX-80 device drivers for CP/M 2.2 was not too bad - Table 1 lists all the
drivers, which I could find as well as the ones I wrote myself.

File Name Size Device Author
DDHP7470.PRL 11 KB HP 7470 plotter Graphic Software Systems
DDHP7220.PRL 10 KB HP 7220 plotter Graphic Software Systems
DDHI3M.PRL 9 KB Houston Instruments Hiplot DMP-3/4-443 plotter Graphic Software Systems
DDHI7M.PRL 10 KB Houston Instruments Hiplot DMP-6/7 plotter Graphic Software Systems
DDSHINWA.PRL 12 KB Seikosha matrix printer Digital Research Inc.
DDMX80.PRL 12 KB Epson MX-80 matrix printer with Graftrax Plus Digital Research Inc.
DDFXHR8.PRL 15 KB Epson 8 pin hi-res matrix printer Digital Research Inc.
DDFXLR7.PRL 12 KB Epson 7 pin lo-res matrix printer Digital Research Inc.
DDFXLR8.PRL 12 KB Epson 8 pin lo-res matrix printer Digital Research Inc.
DDANADXM.PRL 12 KB Anadex DP-9501 and DP-9001A matrix printer Digital Research Inc.
DDCITOLR.PRL 12 KB C.Itoh 8510A Low Resolution matrix printer Digital Research Inc.
DDCNTXM.PRL 12 KB Centronics 351, 352, and 353 matrix printer Digital Research Inc.
DDDS180.PRL 12 KB Datasouth DS180 matrix printer Digital Research Inc.
DDLA50.PRL 12 KB DEC LA50 matrix printer Digital Research Inc.
DDLA100.PRL 12 KB DEC LA100 matrix printer Digital Research Inc.
DDOKI84.PRL 12 KB OKIDATA Microline 84 step 2 matrix printer Digital Research Inc.
DDVRET.PRL 11 KB VT-100 with Digital Engineering Retro-Graphics1 Graphic Software Systems
DDGEN2.PRL 12 KB Digital Engineering Retro-Graphics1 Gen. II Graphic Software Systems
DDHP2627.PRL 8 KB HP 2627 graphics terminal Martin Hepperle
DDHP2648.PRL 8 KB HP 2648 graphics terminal Martin Hepperle
DDHPGL.PRL 12 KB HP-GL metafile Martin Hepperle2
DDMF.PRL 7 KB GEM metafile Martin Hepperle
DDMFA.PRL 8 KB MFA computer system, special video card Martin Hepperle
DDPS.PRL 9 KB Postscript metafile Martin Hepperle
DDPX8.PRL 7 KB Epson PX-8 Martin Hepperle
DDXTEK.PRL 8 KB Tektronix graphics terminal Udo Munk

Table 1: These drivers have been examined for this document.

From today’s perspective, the variety of the existing drivers was rather limited. Only few terminal
drivers and no metafile drivers exist. Therefore, I started to write some for my own hardware needs. A
very helpful starting point was the DDXTEK driver, written by Udo Munk, which served as a
template.

Each of my own drivers consists of a small assembler module and a major FORTRAN module. By
minimizing the usage of FORTRAN runtime library routines and limiting the implementation to basic
functions, the final drivers have an acceptable size. Of course, writing drivers completely in assembler
would produce smaller code, but development would have been much more time consuming for me.

1
 “Retro-Graphics” were add-on boards produced by Digital Engineering. They were available for the Lear Siegler ADM-

3A/3A+ and the Digital Equipment VT-100 terminals. These boards provided Tektronix 4010 graphics emulation with a
screen buffer RAM of 128 KB.
2 A modified variant of the driver developed by Graphic Software Systems.

5

Driver Properties via Turbo Pascal

The following simple Turbo Pascal 3.01 program queries and displays the capabilities of a device as
defined by its driver. It is necessary to reserve some memory above the program, which can be done
with the End option in the Compile menu of Turbo Pascal. Setting the end address to A000H leaves
enough space for GSX and the largest drivers on my 62 KB CP/M system.

The following table of device properties has been produced by running this program on the GSX-80
drivers for CP/M 2.2.

Program GSX;

(* Purpose: query characteristics of a GSX device *)
(* Compile: set end address to $A000 *)
(* Add GSX: GENGRAF GSX *)
(* Creator: Martin Hepperle, 2020 *)
(* ----------------------------------- *)
Var
 contrl : Array[1..30] of Integer;
 intin : Array[1..200] of Integer;
 ptsin : Array[1..200] of Integer;
 intout : Array[1..200] of Integer;
 ptsout : Array[1..200] of Integer;
 pblock : Array[1..5] of Integer;
 w,h : Real;
(* ----------------------------------- *)
Procedure GSX_Init;
(* set up pointer array *)
Begin
 pblock[1] := Addr(contrl[1]);
 pblock[2] := Addr(intin[1]);
 pblock[3] := Addr(ptsin[1]);
 pblock[4] := Addr(intout[1]);
 pblock[5] := Addr(ptsout[1]);
End;
(* ----------------------------------- *)
Procedure GSX_OpenWS (DriverID : Integer);
(* open workstation *)
Begin
 contrl[1] := 1;
 contrl[2] := 0;
 contrl[4] := 10;
 intin[1] := DriverID;
 intin[2] := 1;
 intin[3] := 1;
 intin[4] := 1;
 intin[5] := 1;
 intin[6] := 1;
 intin[7] := 1;
 intin[8] := 1;
 intin[9] := 1;
 intin[10] := 1;

 Bdos(115,Addr(pblock[1]));

 WriteLn('x-resolution ',(intout[1]+1));
 WriteLn('y-resolution ',(intout[2]+1));
 WriteLn('pixel width in micrometer ',intout[4]);
 WriteLn('pixel height in micrometer ',intout[5]);
 w := 1.0*(intout[1]+1)*intout[4];
 h := 1.0*(intout[2]+1)*intout[5];
 WriteLn('0=precise scale supported ',intout[3]);
 WriteLn('number of characters sizes ',intout[6]);
 WriteLn('number of line types ',intout[7]);
 WriteLn('number of line widths ',intout[8]);
 WriteLn('number of marker types ',intout[9]);
 WriteLn('number of marker sizes ',intout[10]);
 WriteLn('number of fonts ',intout[11]);
 WriteLn('number of patterns ',intout[12]);
 WriteLn('number of hatch styles ',intout[13]);
 WriteLn('number of colors ',intout[14]);

6

 WriteLn('number of GDPs supported ',intout[15]);
 WriteLn('1=color capability ',intout[36]);
 WriteLn('1=text rotation capability ',intout[37]);
 WriteLn('1=area fill capability ',intout[38]);
 WriteLn('1=read cell array capability ',intout[39]);
 WriteLn('number of colors ',intout[40]);
 WriteLn('number of locator devices ',intout[41]);
 WriteLn('number of valuator devices ',intout[42]);
 WriteLn('number of choice devices ',intout[43]);
 WriteLn('number of string devices ',intout[44]);
 WriteLn('workstation type ',intout[45]);
 WriteLn('minimum character size ',ptsout[2]);
 WriteLn('maximum character size ',ptsout[4]);
 WriteLn('minimum line width ',ptsout[5]);
 WriteLn('maximum line width ',ptsout[7]);
 WriteLn('minimum marker size ',ptsout[10]);
 WriteLn('maximum marker size ',ptsout[12]);
End;
(* ----------------------------------- *)
Procedure GSX_CloseWS;
(* close workstation *)
Begin
 contrl[1] := 2;
 contrl[2] := 0;
 Bdos(115,Addr(pblock[1]));
End;
(* ----------------------------------- *)
Begin
 GSX_Init;
 GSX_OpenWS(1);
 GSX_CloseWS;
End.
(* ----------------------------------- *)

Figure 5: A simple program to list the characteristics of a GSX-80 driver.

7

Properties of GSX Drivers for CP/M 2.2

Driver
Property

PS MF HP2627 HP2648 XTEK PX8 MFA VRET GEN2 HP7470 HP7220 HI3M HI7M

x-resolution 23171 23171 512 720 1024 480 480 1024 640 10300 15200 1881 2800
y- resolution 32767 32767 390 360 768 64 432 780 420 7560 10000 1401 1970

pixel width in micrometers 9 9 420 352 198 480 252 198 381 25 25 125 127
pixel height in micrometers 9 9 420 352 195 480 252 195 381 25 25 125 127

0=precise scale supported 0 0 1 1 1 1 1 1 1 0 0 0 0
number of characters sizes 0 0 4 4 4 1 1 4 0 0 0 5 5

number of line types 6 6 9 9 5 3 1 5 8 7 7 9 9
number of line widths 1 1 1 1 1 1 1 1 1 1 1 1 1

number of marker types 6 5 5 5 5 5 5 5 5 5 5 6 6
number of marker sizes 1 1 4 4 1 4 4 1 1 0 0 5 5

number of fonts 1 1 1 1 1 1 1 1 1 5 5 1 1
number of patterns 0 0 0 0 0 0 0 0 120 0 0 0 0

number of hatch styles 0 0 0 0 0 0 0 0 0 0 0 0 0
number of predefined colors 2 256 8 2 2 2 2 2 7 2 8 6 8
number of GDPs supported 0 0 0 0 0 0 0 0 4 0 0 0 1

color capability 0 1 1 0 0 0 0 0 0 1 1 1 1
text rotation capability 1 1 1 1 0 0 0 0 1 1 1 1 1

area fill capability 1 1 0 0 0 0 0 0 1 0 0 0 0
read cell array capability 0 0 0 0 0 0 0 0 0 0 0 0 0

number of colors 2 256 8 2 2 2 2 2 0 0 0 0 0
number of locator devices 0 0 1 1 1 0 0 1 1 1 1 0 0

number of valuator devices 0 0 0 0 0 0 0 0 0 0 0 0 0
number of choice devices 0 0 0 0 0 0 0 0 0 0 0 0 0
number of string devices 0 0 1 1 1 1 1 1 1 0 0 0 0

workstation type 4 4 2 2 2 2 2 2 2 2 2 2 2
minimum character size 327 327 588 637 427 4096 531 588 390 260 197 327 233
maximum character size 16385 16385 2353 2549 640 4096 1062 2479 25356 16380 16381 5239 3726

minimum line width 45 71 64 46 32 68 68 32 51 3 2 17 12
maximum line width 11585 7071 64 46 32 68 68 32 51 3 2 17 12

minimum marker size 327 327 672 728 341 1024 607 504 780 347 262 327 133
maximum marker size 8192 16385 2689 2913 341 8192 2427 504 780 16380 16381 5239 2129

Table 2: Properties of metafile, display and plotter drivers.

8

Driver
Property

ANADXM CITOLR CNTXM DS180 LA50 LA100 OKI84 MX80 SHINWA FXHR8 FXLR7 FXLR8

x- resolution 576 1088 528 600 1152 1056 824 456 640 960 480 480
y- resolution 680 680 670 672 680 672 672 456 672 1368 672 672

pixel width in micrometers 338 186 385 338 176 192 246 353 317 212 423 423
pixel height in micrometers 352 352 352 352 352 352 352 296 352 176 352 352

0=precise scale supported 0 0 0 0 0 0 0 0 0 0 0 0
number of characters sizes 12 12 12 12 12 12 12 12 12 12 12 12

number of line types 6 6 6 6 6 6 6 6 6 6 6 6
number of line widths 1 1 1 1 1 1 1 1 1 1 1 1

number of marker types 5 5 5 5 5 5 5 7 5 5 5 5
number of marker sizes 12 12 12 12 12 12 12 12 12 12 12 12

number of fonts 1 1 1 1 1 1 1 1 1 1 1 1
number of patterns 6 6 6 6 6 6 6 6 6 6 6 6

number of hatch styles 6 6 6 6 6 6 6 0 6 6 6 6
number of predefined colors 2 2 2 2 2 2 2 2 2 2 2 2
number of GDPs supported 1 1 1 1 1 1 1 1 1 1 1 1

color capability 0 0 0 0 0 0 0 0 0 0 0 0
text rotation capability 1 1 1 1 1 1 1 1 1 1 1 1

area fill capability 1 1 1 1 1 1 1 0 1 1 1 1
read cell array capability 0 0 0 0 0 0 0 0 0 0 0 0

number of colors 2 2 2 2 2 2 2 2 2 2 2 2
number of locator devices 0 0 0 0 0 0 0 0 0 0 0 0

number of valuator devices 0 0 0 0 0 0 0 0 0 0 0 0
number of choice devices 0 0 0 0 0 0 0 0 0 0 0 0
number of string devices 0 0 0 0 0 0 0 0 0 0 0 0

workstation type 0 0 0 0 0 0 0 0 0 0 0 0
minimum character size 386 386 390 390 386 390 390 575 390 192 390 390
maximum character size 4626 4626 4681 4681 4626 4681 4681 6899 4681 2300 4681 4681

minimum line width 57 30 62 55 28 31 40 72 51 34 68 68
maximum line width 57 30 62 55 28 31 40 72 51 34 68 68

minimum marker size 386 386 390 390 386 390 390 575 390 192 390 390
maximum marker size 4626 4626 4681 4681 4626 4681 4681 6899 4681 2300 4681 4681

Table 3: Properties of matrix printer drivers.

9

A Simple CBASIC Demonstration Program

The following CBASIC-80 program is simply named G.BAS. It displays polylines, markers, and text. It
can be compiled, linked and finally GSX can be attached with the following command sequence:

CB80 G
LK80 G
GENGRAF G

REM DEMONSTRATION PROGRAM FOR
REM CBASIC GRAPHICS EXTENSIONS
REM
REM Martin Hepperle, 2020
REM

%INCLUDE GRAPHCOM.BAS

DIM MX(10),MY(10)

REM Test Drivers 1, 2
FOR G = 1 TO 2
 PRINT "Testing driver ";G

 GRAPHIC OPEN G

 ASK DEVICE X.DIM,Y.DIM
 PRINT "Aspect ratio is ";X.DIM;" x ";Y.DIM

 SET BOUNDS Y.DIM,X.DIM

 SET BEAM "ON"

 REM outer frame
 PLOT (0,1),(1,1),(1,0),(0,0)

 SET CHARACTER HEIGHT 0.02
 GRAPHIC PRINT AT (0.05,0.95): "GSX Driver Test"

 SET CHARACTER HEIGHT 0.05
 GRAPHIC PRINT AT (0.05,0.85): "5 %"
 PLOT (0,0.85),(1,0.85)
 PLOT (0,0.90),(1,0.90)

 SET CHARACTER HEIGHT 0.1
 GRAPHIC PRINT AT (0.05,0.5): "10 %"
 PLOT (0,0.5),(1,0.5)
 PLOT (0,0.6),(1,0.6)

 MX(0)=0.25 : MY(0)=0.15
 MX(1)=0.50 : MY(1)=0.45
 MX(2)=0.75 : MY(2)=0.35

 SET CHARACTER HEIGHT 0.025
 SET JUSTIFY 0.0,0.5

 FOR T=1 TO 6
 SET LINE STYLE T
 MAT PLOT 2: MX, MY

 SET MARKER HEIGHT 0.03
 SET MARKER TYPE T
 SET LINE STYLE 1
 MAT MARKER 2: MX,MY
 SET JUSTIFY 0.0,0.5
 GRAPHIC PRINT AT (0.8,MY(2)): STR$(T)

10

 SET JUSTIFY 1.0,0.5
 SET TEXT ANGLE 51.5/57.5
 GRAPHIC PRINT AT (0.2,MY(0)): STR$(T)
 SET TEXT ANGLE 0

 MY(0) = MY(0) + 0.1
 MY(1) = MY(1) + 0.1
 MY(2) = MY(2) + 0.1

 NEXT T

 PRINT "Done."

 GRAPHIC CLOSE
NEXT G

END

Table 4: This simple test program G.BAS uses an ASSIGN.SYS file having devices with IDs 1 and 2.

Another CBASIC program which was used for testing was DEMOGRAF which came on the CBASIC-80
compiler diskette.

The following sections present some details for some selected drivers.

HP 7470 Plotter (DDHP7470.PRL)

Digital Research provided this driver together with the GSX-80 system. Unfortunately, the driver is
hardwired to the PUN:/RDR: devices (usually a serial port). The serial interface of the plotter is
programmed to use the ENQ/ACK handshaking. There is no option to configure it for output to a file (see
next section).

If no plotter is attached to the serial port (PUN:/RDR:), input and output can be redirected to the console
and some handshaking input must be provided to avoid hanging the program due to the missing response
from the plotter.

STAT RDR:=TTY:
STAT PUN:=TTY:

The call to OPEN WORKSTATION outputs configuration commands for the serial interface.

[ESC].(

This first sequence activates the plotter in case it is in a Y-cable eavesdrop configuration.

[ESC].I80;5;6:

The second sequence sets the block size to 80, the characters for ENQ to 5 and for ACK to 6.

IN;[ENQ]

This following sequence initializes the plotter and sends an ENQ character. It then expects an ACK
character from the plotter3. Pressing the Return key satisfies the handshake requirement of the driver too.
Obviously, the driver does not test the reply from the plotter – it continues when just something is sent
back. The next sequence sets up default line type and character properties.

3 The ENQ/ACK handshaking is a standard protocol for many HP devices and terminals. It injects ENQ characters at
regular intervals into the output stream. It then expects an ACK character to continue. This is very similar to the
XON/XOFF protocol, only using different characters.

11

LT;CS0;SS;SI0.15,0.15;

This block of initialization commands is followed by the actual plotting commands.

A final call to CLOSE WORKSTATON homes the pen and expects an ACK to continue. Again, pressing
the Return key resumes operation. It then stops the plotter operation in an eavesdrop configuration.

PU;PA0,0;[ENQ]
 [ESC].)

HP-GL Graphics Language (DDHPGL.PRL)

This driver was developed by extending the DDHP7470.PRL driver supplied by Digital Research. For this
purpose, the original driver was disassembled and modified. The “new” driver writes the HP-GL
command stream to a file named HPGL-1.PLT. To properly flush the file, output must be finished with a
call to CLOSE WORKSTATION. Multiple image files can be created within a single program run. In this
case, the digit is incremented each time a new file is created by an OPEN WORKSTATION call. You
cannot use GSX input or locator functions when using this driver.

Tektronix 4014 Graphics Terminal (DDXTEK.PRL)

This display driver was written by Udo Munk in a mix of assembler and FORTRAN. Tektronix output is
supported by the Unix Xterm program and by Teraterm under Windows. I used his sources as a template
for writing my own drivers.

Matrix Printer Drivers (e.g. DDFXHR8.PRL)

These drivers use the “banding” technique to print the graphics using a small memory buffer. They create
a temporary file and process it many times to create the printout. Unfortunately markers are created from
bitmapped low-resolution data and look somewhat crude. Similarly, text is rendered with a built-in bitmap
font defined by a matrix of only 8×8 pixels. Objects made from lines are printed out fine, though.

MFA Terminal Card (DDMFA.PRL)

This driver was written by myself. It supports a special graphics card which was developed in 2019 for the
older German MFA “Microprocessor for Education”. This modular 19-inch rack mountable system is
based on the Intel 8085 CPU and capable of running CP/M 2.2.

Epson PX-8 (DDPX8.PRL)

Another driver written by myself. It provides the basic graphics functions for the LCD screen of the Epson
PX-8. Due to the high width-to-height ratio of the screen, it is not so practical to run applications
developed for other devices. Nevertheless, the system independency can be demonstrated even with such
an unusual aspect ratio. The driver uses the PX-8’s escape sequences and can position hardware text only
on the relatively coarse row/column grid. Because you can configure the PX-8 with a RAM and User-
BIOS of “arbitrary” size, the end address of Turbo-Pascal programs has to be adjusted accordingly. The
A000H setting mentioned above works on my PX-8 with a RAM disk of 9 KB and 512 Bytes of User-
BIOS.

12

HP 2627A Color Graphics Terminal (DDHP2627.PRL)

This driver was written by myself. It supports marker sizes and text rotation, as well as more line styles
and 8 predefined colors.

Note that these old terminals had a small I/O buffer and this driver uses the ENQ/ACK protocol to control
the data flow. This means that it sends out an ENQ character at regular intervals and expects an ACK
character back from the terminal when it is ready to process more input.

HP 2648A Monochrome Graphics Terminal (DDHP2648.PRL)

Again, a driver written by myself. Like the driver for the 2627A, it supports marker sizes and text rotation
as well as more line styles. It also uses the ENQ/ACK protocol to control the data flow.

The following sequence of pictures shows some of the output screens produced by the DEMOGRAF
program and the DDHP2648 driver on a real HP 2648A terminal.

Figure 6: Text Size. The HP 2648A uses a
scalable, pixel based font.

Figure 7: Locator. The graphics cursor can
be controlled by the keyboard.

Figure 8: Text Alignment.

Figure 9: Marker Size.

13

Figure 10: Marker Type.

Figure 11: Polyline.

Figure 12: Line Styles. The HP 2648A provides
9 line styles.

Figure 13: Text Rotation. The HP 2648A is
able to rotate text in steps of 90
degrees.

Figure 14: Viewport.

Figure 15: Window.

14

Figure 16: Thank you for watching.

Figure 17: The text output of DEMOGRAF
can be found in the Alpha plane.

Postscript Metafile (DDPS.PRL)

This driver was written by myself. It writes a stream of Postscript pages to a file. An initial OPEN
WORKSTATION command creates a new file “GSX.PS”. Any existing file is overwritten. Each
subsequent CLEAR WORKSTATION command ejects the current page and starts a new page. Finally, a
CLOSE WORKSTATION command is required to properly terminate and close the file.

The output file contains a minimum set of DSC comments to allow embedding as an Encapsulated
Postscript file into documents, paging in Ghostscript or importing into graphics programs like Corel Draw.

Figure 18: Output of G.BAS generated with DDPS.PRL and imported into Corel Draw.

GSX Driver Test

5 %

10 %

1

1

2

2

3

3

4

4

5

5

6

6

15

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 596 834
%%Creator: GSX-80, Martin Hepperle
%%Pages: (atend)
%%BeginProlog

...

%%EndProlog
%%Page: 1 1

...

%%Page: 2 2

...

%%Trailer
%%Pages: 2
%%EOF

Figure 19: Structure of the generated Postscript file.

GEM Metafile (DDMF.PRL)

This driver was written by myself. It writes a stream of GSX records to a file. An initial OPEN
WORKSTATION command creates a new file “GSX.GEM”. Any existing file with this name is
overwritten. A final CLOSE WORKSTATION command is required to properly terminate and close the
file. It is advisable to send only a single graph to the metafile, otherwise the pages will be overlaid.

The resulting metafile can be imported e.g. into Corel Draw on a modern Windows PC.

Figure 20: Output of G.BAS generated with DDMF.PRL and imported into Corel Draw. Better than
nothing, but some attributes are obviously lost in translation – e.g. markers, line styles

GSX Driver Test

5 %

10 %

1

1

2

2

3

3

4

4

5

5

6

6

16

and text orientation. However, they are contained in the metafile, so I blame this fault to
Corel Draw.

Note on some GEM Metafiles

For debugging, I used some of the clipart files which came with the DR Draw program. I noticed that
circles were always drawn twice. I discovered that the DR Draw files actually contained these circles
twice: the first instance was a using the GDP primitive “Circle”, while the immediately following instance
drew the same circle with the GDP primitive “Arc” with start and end angles of 0° respectively 360°.

17

Using GSX with FORTAN – A Tale of Two Libraries

If you don’t like BASIC or Turbo Pascal, you can also use FORTRAN to control GSX output devices.
Please use Microsoft FORTRAN Version 3.44 – all previous versions (including 3.4) have severe bugs,
especially when working with arrays and subroutine parameters (the version of the compiler can be read
from a listing generated with the /L option).

Low Level Interface GSXLIB

For interfacing directly to GSX, I have written a wrapper library which uses a small assembler routine to
call the actual GSX functions. More FORTRAN routines can be added to the library for supporting more
GSX functions.

I applied the following naming scheme loosely to the function names:

Character Purpose
1 G = GSX or Graphics
2-3 Object to act on: WK = workstation, LN = line, MK = marker, TX = text
4-6 Action to perform: SET = set attributes or properties, PLT = plot, OUT = output

In order to reduce programming effort, some of the library subroutines set several properties for one type
of object (e.g. lines, markers) in a single call. These properties stay in effect until they are changed.

All x and y coordinates are in the GSX system’s NDC space, i.e. they range from 0 to 32767.

The GSXLIB library contains the following subroutines

Module Subroutine Parameters Purpose
GSXWK GWKOPN (ID) INTEGER*2 ID open workstation with ID
GSXWK GWKCLO none close workstation
GSXWK GWKCLR none clear workstation
GSXWK GWKINQ (ISIZRC,SIZMM) INTEGER*2 ISIZRC(2)

REAL*4 SIZMM(2)
inquire device dimensions
in pixels and millimeters

GSXLN GLNSET
(IWIDTH,ISTYLE,ICOLOR)

INTEGER*2 IWIDTH, ISTYLE,
ICOLOR

set properties of lines

GSXLN GLNPLT (IX0,IY0,IX1,IY1) INTEGER*2 IX0, IY0, IX1,
IY1

plot a line

GSXMK GMKSET (ISIZE,IMARK,ICOLOR) INTEGER*2 ISIZE, IMARK,
ICOLOR

set properties of markers

GSXMK GMKPLT (IX,IY) INTEGER*2 IX, IY plot a marker
GSXTX GTXOUT (IX,IY,CTEXT,ILEN) INTEGER*2 IX, IY, ILEN

INTEGER*1 CTEXT(100)
output a text string

GSXTX GTXSET(ISIZE, IDEGZ,
ICOLOR)

INTEGER*2 ISIZE, IANGLE,
ICOLOR

set properties of text, angle in 1/10
degrees

Additionally, the library uses an internal common block named “GSX$” for passing parameters through
the assembler routine to the GSX kernel.

Building the Library

To rebuild the library, you can use these commands:

18

m80 =gsxcal
f80 =gsxwk
f80 =gsxln
f80 =gsxmk
f80 =gsxtx
lib80 gsxlib=gsxwk,gsxln,gwsxmk,gsxtx,gsxcal,/E

Note that the order of the modules is important. The routine GSXCAL has to be added last to the library,
otherwise calls to GSXCAL in the GSXWK, GSXLN, GSXMK and GSXTX modules cannot be resolved and the library
would have to be searched twice in all L80 calls.

To compile and link your program GSXPROG.FOR you can use the following command sequence:

f80 =gsxprog
l80 gsxprog/N,gsxprog,gsxlib/S,forlib/S,/E
gengraf gsxprog

High-Level Interface GLIB

Because the GSXLIB core library is very basic, I have written another higher level library, called GLIB.
This library makes use of the low-level library but provides more practical routines for setting up
viewports and windows, drawing axes and grids as well as providing vector text output. Usually, you
would use this library when writing real world programs. The routines provide a core for generating
technical graphs.

a) Teraterm Tektronix Window (DDXTEK.PRL).

19

b) HP 2648 Terminal (DDHP2648.PRL).

c) Epson PX-8 Laptop (DDPX8.PRL.

d) Epson MX-80 Printer DDFXHR8.PRL.

Figure 21: Examples of the output generated by the two demonstration programs GDEMO1 and
GDEMO2.

20

Usage

The GLIB library uses a scaling system based on the concept of a viewport and a window. Think of
drawing graphs on a sheet of paper. The paper corresponds to the full area of the output device.

The Viewport

The viewport defines the region of the paper to use for drawing. It is defined relative to the full size of the
paper. You can also think of this as a percentage of the paper space. A viewport defined by an x-range of
[0…1] and a y-range of [0.5…1.0] would cover the upper half of the output device. The default viewport
covers the horizontal x = [0…1] and the vertical range y = [0…1], i.e. the full page.

The Window

The window defines your user coordinate (UC) system for the viewport. Most drawing routines use this
system. If you want to plot days on the horizontal axes and hours on the vertical axis, you could define a
window of x = [1…365] and y = [0…24]. This UC system is mapped into the viewport.

Figure 22: Setup of a Window for plotting hours versus days inside a Viewport [0.25…0.85,
0.5…0.9]. For demonstration, some extra margin has been added inside the Window, so
that the origin of the green UC system is slightly offset.

Setting up your own UC system allows you to call GMOVE and GDRAW with day and hour numbers for
the X and Y parameters.

After having plotted into this viewport, you could define another viewport on the same page, e.g. with an
x-range of [0…1] and a y-range of [0.0…0.5]. Setting up the same window scaling and calling your
plotting routine again would now produce the same plot as before, but in the lower half of the paper.

A typical GLIB program consists of this sequence (see GDEMO1.FOR and GDEMO2.FOR):

GINIT
 One or more blocks of:
 GVIEW
 GWIND
 … plotting routines …
GCLOSE

GINIT and GCLOSE are mandatory.

0.0

VIEWPORT

WINDOW

UC

1.0
0.0

1.0

0.25 0.85

0.90

0.50

Paper or Screen

-10.0 365.0

-1.0

24.0

21

If not noted otherwise, all routines in the GLIB use the UC system. Only a few parameters for which a
fixed size seems to be more desirable are given in millimeters (for example tick lengths and text heights).
Depending on output device and device driver, these dimensions may not be accurate. Similarly, angles
may be distorted if the output device has non-square pixels or the driver reports incorrect dimensions.

Also note that FORTRAN passes parameters by address (reference). By design, some routines update their
input parameters, most notably the string output functions. This allows for easy writing a sequence of
strings. Keep this in mind, when you reuse these parameters in the calling program.

The names of all routines in the GLIB library start with a ‘G’. The names of internal common blocks start
with “G$” to avoid collision with common blocks in your program.

The library contains the following subroutines (in alphabetical order):

Subroutine Module Parameters
GARC(X,Y,R,PHI0,PHI1,DPHI)

Draw a polygonal arc.

GARC REAL*4 X,Y center point
REAL*4 R radius
REAL*4 PHI0 start angle (deg)
REAL*4 PHI1 end angle (deg)
REAL*4 DPHI angular step (deg)

GCHAR(X,Y,ICHR,SIZE,ANGLE)

Output a single character using a built-in vector font.
X and Y are updated to the baseline starting point of
the next character.

GCHAR REAL*4 X,Y starting point
INTEGER*2 ICHAR character code (32...126)
REAL*4 SIZE character size in millimeters
REAL*4 ANGLE baseline angle (deg),
 0=right, 90=up

GCLEAR

Clear the output device screen.

GCLEAR none

GCLIP(LCLIP)

Switch clipping to viewport on/off.

GCLIP LOGICAL*1 LCLIP clip flag,
 .TRUE. enable clipping
 .FALSE. no clipping

GCLOSE

Close the output device.
Must be called after all GLIB routines.

GCLOSE none

GDRAW(X,Y)

Draw a line to the given point.

GDRAW REAL*4 X,Y point

GHATCH(X,Y,N,ANGLE,DIST)

Hatch the interior of a convex polygon with straight
lines at an angle.

GHATCH REAL*4 X() ordinates of corner points
REAL*4 Y() coordinates of corner points
INTEGER*2 N number of points in X and Y
REAL*4 ANGLE angle to x-axis in degrees
REAL*4 DIST distance between lines
 in millimeters

GINIT(ID)

Select and open the device.
Must be called before any other GLIB routine.
Sets up defaults:
- full-page viewport
- a UC system [0.0...1.0] in x and y.

GINIT INTEGER*2 ID the GSX device ID
(ASSIGN.SYS)

GMARK(X,Y)

Plot a marker of the current type at the given point.

GMARK REAL*4 X,Y point

GMOVE(X,Y)

Move pen to the given point.

GMOVE REAL*4 X,Y point

GNUM(X,Y,SIZE,ANGLE,VAL,NDIG,NALIGN)

Output a REAL number. The X, Y point is updated to
the baseline starting point of the next character.

Alignment: NX, NY

GNUM REAL*4 X,Y starting point of text,
 updated to end point
REAL*4 SIZE character size in millimeters
REAL*4 ANGLE angle of baseline (deg),
 0=right, 90=up
REAL*4 VAL number to write
INTEGER*2 NDIG number of digits behind

22

 NY:
 2 +-----+
 1 |A B C|
 0 +-----+
NX: 0 1 2

 the decimal point
INTEGER*2 NALIGN 2-digits NX NY: alignment

GPOLY(X,Y,N)

Draw a closed polygon through the points.

GPOLY REAL*4 X() ordinates of corner points
REAL*4 Y() coordinates of corner points
INTEGER*2 N number of points in X and Y

GRECT(X0,Y0,X1,Y1)

Draw a rectangle by 2 corner points.

GRECT REAL*4 X0 ordinate of corner point 1
REAL*4 Y0 coordinate of corner point 1
REAL*4 X1 ordinate of corner point 2
REAL*4 Y1 coordinate of corner point 2

GSFONT(IFONT)

Load a new font from disk. Font #1 has Latin
characters, font #2 has Greek characters.

GCHAR INTEGER*2 IFONT font number [1...2]

GSIZE(DEVXMM,DEVYMM)

Inquire device size.

GINIT REAL*4 DEVXMM width in millimeters
REAL*4 DEVYMM height in millimeters

GSMARK(SIZE,NSTYLE,NCOLOR)

Set size, style and color for subsequent markers.

GSMARK REAL*4 SIZE marker size in millimeters
INTEGER*2 NSTYLE marker style,
 1=dot
INTEGER*2 NCOLOR pen color index,
 1=first

GSPEN(WIDTH,NSTYLE,NCOLOR)

Set pen width, style and color for subsequent lines.

GSPEN REAL*4 WIDTH pen width in millimeters
INTEGER*2 NSTYLE pen style, 1=solid
INTEGER*2 NCOLOR pen color index,
 1=first

GTEXT(X,Y,T,NLEN,SIZE,ANGLE,NALIGN)

Draw a text string. X and Y are updated to the baseline
starting point of the next character.

Alignment: NX, NY
 NY:
 2 +-----+
 1 |A B C|
 0 +-----+
NX: 0 1 2

GTEXT REAL*4 X, Y position of start point
INTEGER*1 T(LEN) character string
 ASCII codes in [32...126]
INTEGER*2 NLEN number of characters
REAL*4 SIZE size in millimeters
REAL*4 ANGLE baseline angle in degrees,
 0=right, 90=up
INTEGER*2 NALIGN 2-digits NX NY: alignment

GVIEW(XLO,XHI,YLO,YHI)

Define the viewport position.

GVIEW REAL*4 XLO left edge in unit
REAL*4 XHI right edge in unit
REAL*4 YLO bottom edge in unit system
REAL*4 YHI top edge in unit system

GWIND(XLO,XHI,YLO,YHI)

Define UC system scaling for the current viewport.

GWIND REAL*4 XLO left edge of UC space
REAL*4 XHI right edge of UC space
REAL*4 YLO bottom edge of UC space
REAL*4 YHI top edge of UC space

GXALAB(X0,X1,YPOS,XSTEP,SIZE,ANGLE,NDIG)

Label a horizontal axis.

GAXLAB REAL*4 X0 ordinate of start point
REAL*4 X1 ordinate of end point
REAL*4 YPOS position of axis line
REAL*4 XSTEP distance between ticks
REAL*4 SIZE text size in millimeters
REAL*4 ANGLE text angle (deg)
INTEGER*2 NDIG number of digits behind the
 decimal point

GXAXIS(X0,X1,YPOS,XSTEP,YTICK)

Draw a horizontal axis.

GAXIS REAL*4 X0 start point
REAL*4 X1 end point
REAL*4 YPOS position of axis
REAL*4 XSTEP distance of tick marks
REAL*4 YTICK tick length in millimeters

GXRAST(X0,X1,XSTEP,Y0,Y1)

Draw a grid of vertical lines.

GRAST REAL*4 X0 ordinate of start point
REAL*4 X1 ordinate of end point
REAL*4 XSTEP distance between lines
REAL*4 Y0 start point of each line
REAL*4 Y1 end point of each line

GYALAB(Y0,Y1,XPOS,YSTEP,SIZE,ANGLE,NDIG)

Label a vertical axis.

GAXLAB REAL*4 Y0 start point
REAL*4 Y1 end point
REAL*4 XPOS position of axis
REAL*4 YSTEP distance of ticks
REAL*4 SIZE text size in millimeters
REAL*4 ANGLE text angle in degrees
INTEGER*2 NDIG number of digits behind the
 decimal point

23

GYAXIS(Y0,Y1,XPOS,YSTEP,XTICK)

Draw a vertical axis.

GAXIS REAL*4 Y0 start point
REAL*4 Y1 end point
REAL*4 XPOS position of axis
REAL*4 YSTEP distance of tick marks
REAL*4 XTICK tick length in millimeters

GYRAST(Y0,Y1,YSTEP,X0,X1)

Draw a grid of horizontal lines.

GRAST REAL*4 Y0 coordinate of start point
REAL*4 Y1 coordinate of end point
REAL*4 YSTEP distance between lines
REAL*4 X0 start point of each line
REAL*4 X1 end point of each line

Routines for internal usage Module Parameters
GAUTO(MIN,MAX,MAXDIV,LOW,HIGH,STEP)

Determine “nice” bounds and step size for a given
range without too many subdivisions.
Useful for defining and labeling axes.

GAXIS REAL*4 MIN start point of range
REAL*4 MAX end point of range
INTEGER*2 MAXDIV maximum number of divisions
REAL*4 LOW lower bound (output)
REAL*4 HIGH upper bound (output)
REAL*4 STEP interval (output)

GDRAWC(X,Y)

Draw a line to the given point.
Clips to viewport.
Used internally by GDRAW routine.

GDRAWC REAL*4 X,Y point

GMOVEC(X,Y)

Move pen to the given point.
Clips to viewport.
Used internally by GMOVE routine.

GMOVEC REAL*4 X,Y point

GIDRAW(IX,IY)

Draw a line to the given point in normalized device
units (NDC).
Used internally by GLIB routines.

GIDRAW INTEGER*2 IX,IY point in NDC system

GIMOVE(IX,IY)

Move the pen to the given point in normalized device
units (NDC).
Used internally by GLIB routines.

GIMOVE INTEGER*2 IX,IY point in NDC system

GNUMST(VAL,NDIG,FMT,NLEN)

Convert a REAL number to a string.
Used internally by GLIB routines.

GNUM REAL*4 VAL number to convert
INTEGER*2 NDIG digits after decimal point
INTEGER*1 FMT(20) a buffer for result
INTEGER*2 NLEN length in FMT(1:LEN)

GCHSIZ(CCHR,SIZE,DX,DY)

Determine the dimension of a character.
Used internally by GLIB routines.

GCHSIZ INTEGER*1 CCHR character code (32…126)
REAL*4 SIZE height in millimeters
REAL*4 DX width of character in UC
REAL*4 DY height of character in UC

GTXSIZ(T,NLEN,SIZE,DX,DY)

Determine the dimension of a string.
Used internally by GLIB routines.

GTXSIZ INTEGER*1 T(LEN) text string
INTEGER*2 NLEN length of text
REAL*4 SIZE height in millimeters
REAL*4 DX width of string in UC
REAL*4 DY height of string in UC

GRAST(X0,Y0,X1,Y1,XSTEP,YSTEP,NSTEPS)

Draw a grid of parallel lines.
Used internally by GLIB routines.

GRAST REAL*4 X0 ordinate of start point
REAL*4 Y0 coordinate of start point
REAL*4 X1 ordinate of end point
REAL*4 Y1 coordinate of end point
REAL*4 XSTEP horizontal distance to shift
REAL*4 YSTEP vertical distance to shift
INTEGER*2 NSTEPS number of steps to perform

Building the Library

To compile the modules for the library you can use the glib.sub file with SUBMIT or manually issue these
commands:

m80 =gcons
f80 =ginit
f80 =gclose
f80 =gclear

24

f80 =grect
f80 =garc
f80 =gwind
f80 =gview
f80 =gaxis
f80 =gaxlab
f80 =gspen
f80 =gsmark
f80 =gmark
f80 =grast
f80 =gnum
f80 =gtext
f80 =gchsiz
f80 =gchar
f80 =gmovec
f80 =gdrawc
f80 =gclip
f80 =gmove
f80 =gdraw
f80 =gimove
f80 =gidraw
f80 =gtrafo
f80 =gpoly
f80 =ghatch

The library must be built in this order to avoid unresolved references:

lib80
glib=ginit,gclose,gclear,gcons,grect,garc,gwind,gview,gaxis,gaxlab
grast,gnum,gtext,gchar,gmove,gdraw,gmovec,gdrawc,gclip,gimove,gidraw
gchsiz,gspen,gsmark,gmark,gtrafo,gpoly,ghatch
/E

Finally, the demonstration programs can be generated by these commands:

f80 =gdemo1
l80 gdemo1/N,gdemo1,glib/S,gsxlib/S,forlib/S,/E
gengraf gdemo1

Shown for gdemo1, the corresponding commands are used for gdemo2 and gdemo3.

25

Internal Transformations

As a note to myself, I list the most common transformations (using internal variables from GLIB.FI)

to

from
NDC UC mm

NDC

UC.x = XW0 + (NDC.x - DX - XV0)/SX
UC.y = YW0 + (NDC.y - DY - YV0)/SY

difference (e.g. for lengths or height)

ΔUC.x = ΔNDC.x/SX
ΔUC.y = ΔNDC.y/SY

 mm.x = NDC.x * DEVXMM * SX /
DEVSIX

mm.y = NDC.y * DEVYMM *SY /
DEVSIY

UC

NDC.x = DX + XV0 + (UC.x-XW0)*SX
NDC.y = DY + YV0 + (UC.y-YW0)*SY

difference (e.g. for lengths or height)

ΔNDC.x = ΔUC.x*SX
ΔNDC.y = ΔUC.y*SY

mm.x = ((UC.x - XW0)*SX + DY +
YV0)* DEVXMM/ DEVSIX

mm.y = ((UC.y - YW0)*SY + DY +
YV0)* DEVYMM/ DEVSIY

difference (e.g. for lengths or height)
Δmm.x = ΔUC.x*SX* DEVXMM/

DEVSIX
Δmm.y = ΔUC.y*SY* DEVYMM/

DEVSIY

mm

NDC.x = DEVSIX * mm.x / (
DEVXMM*SX)

NDC.y = DEVSIY * mm.y /
(DEVYMM*SY)

UC.x = XW0 + (DEVSIX * mm.x /
DEVXMM - DX - XV0)/SX

UC.y = YW0 + (DEVSIY * mm.y /
DEVYMM - DY - YV0)/SY

difference (e.g. for lengths or height)

ΔUC.x = DEVSIX * dΔmm.x /
(DEVXMM*SX)

ΔUC.y = DEVSIY * Δmm.y /
(DEVYMM*SY)

Frame

UC.x = XW0 + (DEVSIX * frame.x - DX
- XV0)/SX

UC.y = YW0 + (DEVSIY * frame.y - DY
- YV0)/SY

with mm to frame

(frame.x = mm.x / DEVXMM)
(frame.y = mm.y / DEVYMM)

26

GEMVIEW

This is a small utility program to read and output GEM metafiles. You can use the driver DDMF to create
a GEM metafile or use one created e.g. by DR Draw or other programs (DR Draw for CP/M-80 or CP/M-
86 – DR Draw for MS-DOS uses a different format with extension PIX). With GEMVIEW, you can later
send this file to a printer or translate it into plotter commands.

You start GEMVIEW with a command line like:

GEMVIEW -d:2 -r -o:2 c:file.gem

or, producing the same result:

GEMVIEW -c
-d:2 -r -o:2 c:file.gem

Parameter Description Default

file the name of the metafile to read; without extension, “GEM” is assumed. GSX.GEM

-c ↵
cmdline

read all parameters from a second command line to work around a known Turbo
Pascal 3.01 for CP/M-80 command line length bug. Prompts with a ‘>’.

none

-d:n
n=1: set Debug level 1, outputs one line for each record read.
n=2: set Debug level 2, outputs each record with its arguments.

0

-o:id outputs to the device with the given id, as defined in ASSIGN.SYS. 1

-r:n
n=1: redirects PUN: and, LST: to the console and to a file GSX.LOG.
n=2: redirects PUN:, LST: and, CON: to a file GSX.LOG.
Any read to RDR: is satisfied with an ACK character.

0

-s:n scale horizontal x-coordinates by integer n. 1

-t:n scale vertical y-coordinates by integer n. 1

-x:n shift horizontal x-coordinates by integer n. 0

-y:n shift vertical y-coordinates by integer n. 0

Table 5: Available optional parameters.

Notes:

 GEMVIEW first tries to open the file with the given name. If this file does not exist, it appends
‘GEM’ to the name and tries again before failing.

 GEMVIEW is written in Turbo Pascal 3.01A. Unfortunately, Turbo Pascal for CP/M-80 has a bug
with command line handling – it garbles the command line after 32 characters. If you want to
specify many options, your command line may exceed this limit. In this case, you can shorten the
name of your GEM metafile and omit the extension “GEM” to minimize the length of the
command line.
For command options up to 127 characters, use the –c option to enter the parameter list in a
second command line. Wait until the GSX header has been displayed and the prompt ‘>’ appears.

 GEMVIEW does not handle all GSX record types. Metafiles generated with later versions of
GEM may contain many more record types than specified by the initial specification for GSX.

 GEMVIEW uses the header information to shift the coordinate values so that they fall into the
positive integer range. Some metafiles contain incorrect size information in their header. As a
result, some points may fall outside of the valid range [0…32767]. This typically results in
partially reflected long lines across the image. In this case, you can try using the –x and –y options

27

to add integer offsets to the values in the metafile. Similarly, you can use the –s and –t options to
scale the values e.g. by 2, as long as the integer range is not exceeded.

 The option –r:1 allows for testing drivers which communicate with RDR:, PUN: or LST: (for
example, the plotter driver DDHP7470). With the option –r:2 CON: is captured too, so that no
output is written to the screen (except for the initial GSX message).
By TYPEing the GSX.LOG file, you can replay the commands to the terminal.
Alternatively, you can capture the output using a terminal program like TeraTerm.

Figure 23: Digital Research advertisement for GSX software products.

28

Figure 24: Digital Engineering advertisement for the Retro-Graphics board for the VT-100.

Figure 25: ISI Selenar advertisement for their Graphics board for the VT-100.

29

References

[1] Langhorst, Fred E., Clarkson, Thomas B. III: “Realizing Graphics Standards for Microcomputers”, p.
256-268, BYTE Magazine, February 1983.

[2] “GSX Graphics Extension, Programmers Guide”, Digital Research Inc., 2nd ed., September 1983.
[3] “CBASIC Compiler Language, Graphics Guide”, Digital Research Inc., 1st ed., May 1983.
[4] Munk, Udo: CB80 and GSX software files, downloadable under

https://www.autometer.de/unix4fun/z80pack/index.html [retrieved February 2020].
[5] Kotulla, Martin: “GSX ohne Geheimnisse”, Teil 1, p. 80-84, c’t 12, 1986; Teil 2, p. 116-123, c’t 1,

1987; Teil 3, p. 98-105, c’t 2, 1987; Teil 4, p. 124-127, c’t 3, 1987.
[6] Licher, Eckhard, von Massenbach, Thomas: “CP/M 2 lernt dazu”, Teil 1, p.124-135, c’t 1, 1987; Teil

2, p.78-85, c’t 2, 1987.
[7] Russ, Dave: “GSX – The Graphics Interface”, 80-Bus News, V3N5, September-October 1984.
[8] “FORTRAN-80 User’s Manual”, Microsoft, 1979.
[9] “FORTRAN-80 Reference Manual”, Microsoft, 1979.
[10] “Utility Software Package Reference Manual”, Microsoft, 1981.

Notes:

 Fred Langhorst, the author of the BYTE article, was DRI’s product manager for GSX.
 In 1988, the address of the co-developers of GSX and products like GSS-KERNEL was

Graphic Software Systems, Inc., 25 117 Southwest Parkway, Wilsonville, OR 97070-9600, USA
They also provided implementations of GKS for the PDP-I 1 under RT-11, RSX-11M and Unix.

 The driver DDGDC.PRL shows a banner, but then hangs when loading into a generic CP/M 2.2
system. It probably tries to initialize (nonexistent) hardware with the 7220 graphics chip. The
company “miro” later also produced graphics cards for IBM-PC compatibles and Apples, focusing
on the professional market.

GSX-80/GIOS 1.3 for miroGDC 31-AUG-83
Copyright (C) 1983
miro Datensysteme GmbH All Rights Reserved

 During disassembly of some drivers supplied by DRI (DDMX80.PRL and DDHP7470.PRL) I
noticed that these came with an appended copyright notice block of 256 bytes. This block is not
displayed and serves no functional purpose. It is simply appended to the driver file.

 Thanks go to Emmanuel Roche for proofreading this document and providing comments and
historic insight. As this is a living document, I am responsible for any remaining and newly
introduced errors.

