Electric Flight – Potential and Limitations

AVT-209 Workshop, Lisbon, 22 – 24 October 2012

Dr. Martin Hepperle

DLR

Institute of Aerodynamics and Flow Technology Braunschweig, Germany

History and Predictions – Air Traffic

Quelle: Airbus Global Market Forecast 2010 – 2029

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

History and Predictions – Oil Production

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Electric propulsion of Aircraft?

→ Motivation:

- \neg Air traffic is growing.
- → Availability of fossil fuels is be limited.
- → Electric propulsion systems offer high efficiencies.
- → Electric propulsion systems are in situ "zero-emission".
- → Specifics of air transport:
 - → Aircraft are already very efficient (3-4 liter/PAX/100km).
 - → Aircraft fly over long and very long distances (1000-10000 km).
 - \rightarrow Mass is much more important than in ground transportation.
 - → Safety standards are very high.

There is nothing new under the sun... One of the Pioneers of Electric Flight

→ Fred Militky

- → 1940 first trials, after 1945 chief engineer at Graupner.
- \neg Motor glider MB-E1 (HB-3, b=12 m, m = 440 kg)
 - → 21. October 1973: worldwide first flight with electric motor,
 - → duration 9-14 Min, altitude 360 m, Pilot Heino Brditschka,
 - → performance not reached for 10 years,
 - → NiCd batteries by Varta,
 - → Motor by Bosch (13 PS @ 2400 1/min).

Conventional Propulsion Systems

- → Energy storage:
 - → liquid fuel,
 - \neg alternative: Gas (e.g. H₂).
- → Conversion to propulsive power:
 - → Turbofan,
 - Turboshaft / piston engine and Propeller,
 - RPM adaption as needed by a gearbox.
- Fuel is burnt, mass reduces with flight time.

Electric Propulsion

- → There are many possibilities.
- → Mainly two types of interest.
- → Fuel cell systems
 - complex and still expensive,
 - usage of "conventional" energy storage systems (Kerosene, Methanol, H2),
 - \neg variable mass.
- → Batteries
 - → simpler systems,
 - → much recent development,

also: hybrid systems

Total Efficiency The Chain from on-board Energy to Propulsion

in der Helmholtz-Gemeinschaft

AVT-209 2012 > Martin Hepperle

Characteristics of Energy Storage Systems Specific Energy Content of the "pure" Energy Carrier

in der Helmholtz-Gemeinschaft

Characteristics of Energy Storage Systems Not Fuel Mass but System Mass is important

- → Kerosene / Gas
 - → Tanks, often integral part of the structure, tubing, pumps.
- → Hydrogen
 - → Gas: high pressure tanks (typical: 350-700 bar), tubing, ...,
 - → Liquid: insulated tanks (-250 °C), insulation, tubing,
 - → structurally integrated tanks (metal-hydrides)?
- → Battery
 - → Casing, heating, ventilation, wiring,
- → Fuel Cell
 - → compressors, water, ...,
 - → Kerosene/Gas/Alcohol: reformer required.

Equivalent Energy Density of Propulsion Systems

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 11 AVT-209 2012 > Martin Hepperle

Range of Aircraft with Energy Storage in Batteries

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

(neglecting fuel reserves as well as takeoff and landing)

Range of Aircraft

- → Energy from decomposing / burning fuel (hot or cold):
 - \neg Fuel consumption reduces mass during the flight time.

$$R = E^* \cdot \eta_{total} \cdot \frac{1}{g} \cdot \frac{L}{D} \cdot ln \left(\frac{1}{1 - \frac{m_{fuel}}{m}} \right)$$

→ Energy drawn from batteries or solar energy:

→ Mass stays constant.

$$R = E^* \cdot \eta_{total} \cdot \frac{1}{g} \cdot \frac{L}{D} \cdot \frac{m_{battery}}{m}$$

Impact of variable Mass on Range

- Aircraft with a small mass fraction m_{fuel}/m of energy storage experience a small effect.
- Short range aircraft lose about 5-10% in range.
- Long range aircraft
 lose about 20-25%
 of range.
- This effect must be compensated by additional energy or efficiency.

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Range of Aircraft with Energy Storage in Batteries

- This limit cannot be exceeded.
- Limit case, allows for a rapid assessment of "weird" concepts, realistic ranges are always lower!

$R = E^* \cdot \eta_{total} \cdot \frac{1}{g} \cdot \frac{L}{D} \cdot \left(1 - \frac{m_{empty}}{m} - \frac{m_{payload}}{m}\right)$ Determine required Aircraft Mass for Range

✓ rearranging the range equation yields the aircraft mass for a given range

$$\mathbf{m} = \frac{\mathbf{PAX} \cdot \mathbf{m}_{pax}}{1 - \frac{\mathbf{m}_{empty}}{\mathbf{m}} - \frac{\mathbf{g}}{\mathbf{E}^* \cdot \boldsymbol{\eta}_{total}} \cdot \mathbf{L} / \mathbf{D}} \cdot \mathbf{R}}$$

- \rightarrow only a small number of parameters needed:
 - → desired range R,
 - \neg number of passengers PAX and mass per PAX m_{pax},
 - → empty mass fraction m_{empty}/m,
 - → specific energy E* of the battery system,
 - → total efficiency of the system from battery to thrust,
 - \neg lift over drag ratio L/D.
 - → no direct influence of cruise altitude!
 - \rightarrow for R=0 we obtain the absolute minimum mass of the aircraft.

Sizing Limits

→ Aircraft mass for given range

$$\mathbf{m} = \frac{\mathbf{PAX} \cdot \mathbf{m}_{pax}}{1 - \frac{\mathbf{m}_{empty}}{\mathbf{m}} - \frac{\mathbf{g}}{\mathbf{E}^* \cdot \boldsymbol{\eta}_{total}} \cdot \mathbf{L} / \mathbf{D}} \cdot \mathbf{R}}$$

5

 \neg Constraints for solution (m > 0)

$$\frac{L}{D} > \frac{R \cdot g}{\left(1 - m_{_{empty}}/m\right) \cdot E^{^{*}} \cdot \eta_{_{total}}}$$

Sizing Limits

7

$$m = \frac{PAX \cdot m_{pax}}{1 - \frac{m_{empty}}{m} - \frac{g}{E^* \cdot \eta_{total} \cdot L / D} \cdot R}$$

5

 \neg Constraints for solution (m > 0)

Aircraft mass for given range

$$\frac{L}{D} > \frac{R \cdot g}{\left(1 - m_{_{empty}}/m\right) \cdot E^{^{*}} \cdot \eta_{_{total}}}$$

$$E^{*} > \frac{R \cdot g}{\left(1 - m_{_{empty}}/m\right) \cdot \eta_{_{total}} \cdot L \, / \, D}$$

Sizing Limits

- → Aircraft mass for given range $m = \frac{PAX \cdot m_{pax}}{1 - \frac{m_{empty}}{m} - \frac{g}{E^* \cdot \eta_{total} \cdot L / D} \cdot R}$
- \neg Constraints for solution (m > 0)

$$\frac{L}{D} > \frac{R \cdot g}{\left(1 - m_{_{empty}}/m\right) \cdot E^{^{*}} \cdot \eta_{_{total}}}$$

$$\mathrm{E}^{*} > rac{\mathrm{R} \cdot \mathrm{g}}{\left(1 - \mathrm{m}_{\mathrm{empty}}/\mathrm{m}
ight) \cdot \eta_{\mathrm{total}} \cdot \mathrm{L} \, / \, \mathrm{D}}$$

$$\frac{m_{_{empty}}}{m} < 1 - \frac{R \cdot g}{E^{^{*}} \cdot \eta_{_{total}} \cdot L \, / \, D}$$

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 24 AVT-209 2012 > Martin Hepperle

Refined Model

- → Aircraft geometry and structures
 - \neg wing span, wing area, empty mass fraction.
- → Aerodynamics
 - → "square" polar, zero lift drag, k-factor.
- → System
 - \neg Battery: E*, U(t); Motor: P(U), efficiencies.
- → Propeller
 - → diameter, speed, number → efficiency = f(T, v, H).
- → Energy optimized mission
 - \neg climb with optimum speed (incl. propeller),
 - \neg cruise with optimum speed (incl. propeller),
 - → descent with max. L/D (only secondary energy consumption),
 - → no reserves!

Туре	Symbol	Units	Performance Aircraft	Cruiser Aircraft	Cruiser Aircraft	Cruiser Aircraft	Cruiser Aircraft	Regional Aircraft	Regional Aircraft
Example			Lange	Pipistrel	IFB	IFB	Pipistrel	Fairchild	Focke-Wulf
			Antares 20E	Taurus	E-Genius	E-Genius	Panthera	Do 328	Condor
Geometry	b	m	20	15.0	16.7	16.7	10.9	21.0	32.8
	S	m ²	12.6	12.3	14.3	14.3	10.9	40	118
	AR	-	31.8	18.2	19.9	19.9	10.8	11	9.1
Payload	PAX	-	1	2	1	2	2	32	30
Aero	L/D	-	42	32	38	38	29	16	16
	m/S	kg/m ²	42.1	44.2	59.2	59.7	110.1	397	131.8
	m/b^2	kg/m ²	1.3	2.4	3.0	3.0	10.2	36.1	14.5
	C _{D, 0}	-	0.0118 (2)	0.0142 (2)	0.0103	0.0103	0.0100	0.0306	0.0250
Masses	m	kg	530	545	850	850	1200	15880	15400
	mempty	kg	360	264	450	450	500	8500	9700
	m _{battery}	kg	80	101	310	220	520	4500	3000
	m _{empty} /m	-	0.68	0.48	0.53	0.53	0.42	0.54	0.63
	m _{battery} /m	-	0.15	0.19	0.37	0.26	0.43	0.28	0.19
	m _{payload} /m	-	0.17	0.33	0.10	0.21	0.15	0.18	0.18
Battery power	P _{climb}	kW	47	46	67	67	139	3799	2605
	Pcruise	kW	5	8	11	11	33	1102	690
Range	R _{powered}	km	126	141	495	316	462	157	88
	R	km	282	259	613	435	548	206	131
	R _{ultimate} ⁽³⁾	km	622	774	835	835	776	351	280
	1 - f _e - f _p	-	0.15	0.19	0.37	0.26	0.43	0.28	0.20
	$E^*\eta L/D/g$	km	1960	1436	1800	1800	1330	765	758
Time	t powered	h	1.29	1.3	3.9	2.5	2.3	0.5	0.5
	t	h	2.4	2.2	4.8	3.4	2.6	0.7	0.6
Verbrauch	E _{spec}	Wh/PAX/km	49	34	89	45	84	120	134
Kerosin	E _{equiv}	l/PAX/100km	1.05	0.73	2.04	1.02	1.92	2.79	3.02
Altitude	Н	m	3000	3000	3000	3000	3000	3000	3000

Example: Regional Aircraft

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

- The range of the aircraft with
 32 passengers is about 1200 km.
- With full tanks and
 28 passengers it grows to 2200 km.
- \neg The lift over drag ratio is about 16.

- Modification: Replacing fuel system and engines by an electric system of identical mass.
- With current technology the aircraft would reach a range of 202 km, however without any reserves (with reserves: R=50 km).

 $C_{\rm D,\ 0}$ zero lift drag reduced by 20%

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

in der Helmholtz-Gemeinschaft

in der Helmholtz-Gemeinschaft

in der Helmholtz-Gemeinschaft

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Big Steps in Technology Development are Required.

Deutsches Zentrum DLR für Luft- und Raum

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft → Energy optimized flight:

The cruise speed drops due to higher wing span below 300 km/h

(The turboprop variant flies at 480 km/h.)

 \rightarrow L/D = 16 \rightarrow 27.5

- The high aspect ratio requires high lift coefficients (climb: 0.9, cruise: 1.2).
- Consumption with a turboprop would be about
 1.5 Liter/PAX/100km

Note on Range Flexibility

Trading fuel / batteries for range is more useful for (lightweight) kerosene than for (heavy) batteries.

328-LBME²

m = 14500 kgb = 31.5 m

 $\begin{array}{l} C_{_{D,\,0}}=\,0.0245\\ E^{'}=\,720\ Wh/kg\\ R\,=\,1455\ km\\ t\,=\,6.02\ h \end{array}$

¢=

Battery Powered Aircraft?

- **~** Conclusions:
 - ✓ Electric propulsion systems with batteries are possible for small aircraft,
 - → The range is strongly limited, but useable for General Aviation and UAVs,
 - For larger aircraft the battery technology must be drastically improved to <u>at least</u> 1000 Wh/kg (factor 5), This seems to be unlikely within the next 10 years, but may be within 20-40 years.
 - Costs are less relevant as they will shrink due to automotive and consumer industry.
- ✓ Many Open Questions:
 - ✓ What is the total balance including production and recycling?
 - \rightarrow Are the raw materials for automotive and aviation available in the long term?
 - ✓ What happens in hydrogen technology (storage problem)?
 - ✓ What happens in fuel cell technology (cost, efficiency)?
 - Should we better use bio fuels, alcohol, synthetic fuels or hydrogen in conventional propulsion systems?
 - ✓ What about safety of electric propulsion systems?
 - ✓ We are not (yet) accustomed to all-electric aircraft,.
 - \neg Fire in case of damage or crash, effects when ditching in water,
 - ✓ Electric interference (high voltages and currents vs. mobile phones).

There is nothing new under the sun... One of the Pioneers of Electric Flight

→ Fred Militky

- \checkmark Motor glider MB-E1 (HB-3, b=12 m, m = 440 kg)
 - → 21. October 1973: worldwide first flight with electric motor,
 - → duration 9-14 Min, altitude 360 m, Pilot Heino Brditschka,
 - → performance not reached for 10 years,
 - ➤ NiCd batteries by Varta,
 - → Motor by Bosch (13 PS @ 2400 1/min).

Source: Interne

Today, 40 years later, using commercially available battery systems, the flight time could be extended to 2.5 hours.

DIR

Return to the Future with Whole Milk?

Thank You for Listening!