Epson Hx-28 Tips and Tricks

Martin Hepperle, November 2018 — January 2021

Contents
| B € 1< 1 1<) Y R UTUPUUPSRRUSRO 2
2. POWET SUPPLY eriiiiieiiiiecee ettt ettt b e bt et e s tee s tae s tbeerbe e s be e be e bt e taenebeesbeesbearbeenreeraens 3
2% DN b -1 0 13 {0 4 14 (<2 ol U133 L OSSPSR 3
2.2, Replacing the Battery.....ccooieiiiiiieiiiicet ettt 4
2.3, Charging the Batterycccvevierieiiiiieeieeie et eseesteste st e ebeese e e essaessaessaesssesnseesseesseesseesseensns 5
3. Variations Of the ROMScocciiiiiiiiiiicicesie ettt ettt e b e e veesbe e taestaesssessbessseessaenseesseens 5
4. NEW PrINter PAPETeoviiiiiiciiiciece ettt ettt ettt s tae s ebeesbeesbeesbeestaesssesssessseasseenseesaens 5
5. NeW Printer RIDDONSccoviiiiiiiiiieiie ettt sttt e s aestaesabeesbeesbeesssesssesssessseenseessaens 6
6. Internal RAM BOArds........cccveviiiiiiieiieeieerieesitestestesreereeseesstessaessaessaessseesseesseesssesssesssessseesesssenns 7
6.1. “MC” 8 KB RAM DOAIAoeiiiiiiciiieeieece ettt ettt et e ve e et e e ab e e s sbeeesaaaesaree s 7
6.2. 16 KB RAM D0Ard TYPE L..ccueeiiiiiiiiiieiieieneeeeeteesie ettt sttt st s 8
6.3, 16 KB RAM DOAIA TYPE 2..eecuiieiieiieiieiiiesiiesie ettt ettt e seteste s e ensaensaesseessaesnsesnsesnsaenseenseennns 9
7. HX-20 for the BUNAESWENTcccoiiiiiiiiciicie ettt ettt sta e s v e e sb e b e esbe e e e eaesenas 10
Replacing the Capacitors......c..ccieciieriierierierieereereereesteesteesaeeseressressseesseasseesseesssesssesssessseessesssennns 10
9. Replacing the Cassette DIive Belt.......ccccoieiiiiiiiiiiiicieciceeteeste et 11
10. Character Sets and KeYDOATASc.cccveriieriiiieiie i cis ettt seeesaesvessbeesreesreeseeseessnesenas 14
11. Loading BASIC Programs via RS-232C........ccceiiiiiiiiieiieieieestecee st ere et sne e seresre e enes 15
12. Controlling EXternal DEVICEScccviiviiiiiiiiieriieiiesie e ere ettt seeestaesaesevessbeesseesseesseesssessnesenas 15
13. Some USEful SUDTOULINESccvieiiieriiiiieiiecie et eieesie ettt e e b e eeteesteestaeseaessnesssessseesseesseesssensnas 16
13.1. User Defined CRAraCLEIScccviiiiiieiieeiiee ettt eiteesteeeeeesveeeseeeeseveeebeeeseseessseeessseessseeansseenes 16
13.2. Get the Time iN SECONASeeiuiiiieeiieiieteerteri ettt ettt et e st e et e s te et e e bt e bt esseesaeesneesnseeseens 16

13.3. Functions to obtain Low and High Byte of an Integer.............cceeevveeiveciienienienienieeie e 17

14. Some Benchmark RESUILSccooiiiiiiiiiiiiieei et 17
15. Writing Machine Language ROULINESccccevievieiiieiieiieiteieeeesiee st see e eve e ssne e 19
15.1. Some Details about HX-20 BASIC (Microsoft BASIC)ccccevveviiiiieiicieeeeseesee e 24
15.1.1. The Floating Point ACCUMUIALOTccceviiiiieiieiieieeiee ettt 24
15.1.2. Memory allocation Of ATITAYSccccvereieeriieriierieerierre e et et esseesseesreeseressseesseesseesseensns 24
15.1.3. The BASIC WOTK AT@aS...c..eiiiiiiiiiieiieniteiie ettt et 25
16, USINE @ PIINTOT.....uiiiiiieiieeciie ettt eite ettt e e e steeesiveesbeeetaeessbeeessseessseessseeesssaessseeansseesssessnssennssens 27
17. MH-20 — A Peripheral EMUIator...........coocuiiiiiiiiiieciie ettt et e eeae s 27
17.1. Required Hardware for HX=20ccccieiiiiiiiiiiie ettt 28
17.2. Using the MH-20 SOFtWATIE........cceccierieiieiieiiecie ettt seesve e veebeese e seesseessaesssesnseenseens 28
17.3. Display Controller EMUIAtioNccveviiiiiieiiiiieiieeis ettt sere e esveeseesreesseeseaessneeens 29
17.3.1. Applicable BASIC Keywords and Commandsccceccverienienernieniieerieesieeeeeeeenes 30
17.4. Disk Drive EMUIAtION ...c..oouiiiiiiiiiiiiiitieieieeee ettt sttt s 34
17.4.1. Technical BaCK@roUnd..........ccccvevieiieiiiiiieieee ettt sereseveeereesreessaenes 34
17.4.2. The EMUIAtION ...ccviiiiiiiiiie ettt ettt e et e e ab e e eteeesaseesaveeeneneesnveeenes 35
17.4.3. Applicable BASIC Keywords and Commandscceccverreereereerinenreenieesieesieeneeenens 35
| T O (< LU SRS 36
18. News and Commercial ANNOUNCEMENTScccueiriiirierieiieiie ettt sttt e st esaee e 37
19. References and Further Readingcocvieviiiiiiiiiiiiciiecee ettt e ve e e 42
1. General

The HX-20 was, and still is, a handy, portable computer with built-in printer and cassette drive — some
call it the first laptop.

The LCD screen shows a window of 4 lines of 20 characters each into a virtual screen which can (in
theory) be as large as 255 by 255 characters. In addition to text it can also display graphics at its
resolution of 120x32 pixels.

The cassette drive can be replaced by a small ROM box and you can add a larger RAM/ROM box to
the left side of the computer and you can install one ROM-chip inside the computer.

Additional devices like a barcode reader, a flexible disk drive unit and a display controller were
available in those days.

The operating system and an adapted Microsoft BASIC are stored in 32 KB of ROM, which also
contains a Monitor program. Furthermore 16 KB of RAM are installed inside the computer. The
BASIC also provides commands for graphics and for the RS-232C interface. It can also call routines
in machine code. Programs and data files can be stored in RAM and are immediately available after
switching the device on.

The serial RS-232C interface can be used to communicate with other computers or printers and
modems. A second ,,high speed interface™ was intended to be used by disk drives and display
controllers. It is not directly supported in BASIC, but can be used by programs in machine language.

The HX-20 computer was often used by sales forces, in surveying, agriculture and for mobile data
acquisition or even by the military. For these applications additional peripherals have been constructed
and can sometimes be found installed on these systems.

2

Because of the robust mechanical design the HX-20 is a long lasting computer — except for some
aging problems of it electronics components.

2. Power Supply

2.1. Transformer Unit

The transformer unit for the HX-20 should never be used without the built-in battery. On the on hand
side the battery acts as a buffer for actions with high power demands, for example printing or
accessing the cassette drive. Peak currents can exceed 1 A. On the other hand the battery charging load
reduces the voltage of the transformer to the required voltage of about 5 V.

The charging time of the original Ni-Cd cells (having about 1100 mAh) is roughly 8 hours. When new
cells with a higher capacity of 2000 mAh are used, the charging time grows to 14 hours. In order to
maximize battery life you should avoid overcharging the battery.

The original transformer unit is matched to the battery circuit of the HX-20. It supplies its nominal
voltage of 6V at 600 mA only when it is loaded by charging the battery. The 5.5/2.1 mm barrel plug
carries plus on the outer barrel and minus on the inner pin — most standard power supplies have the
polarity reversed. The circuit in the HX-20 has a protection diode so that no damage can occur when
the polarity is incorrect, but also no charging will take place.

You should always discharge the battery until the ,,CHARGE BATTERY !“ message appears, perform
a full charge and then disconnect the power supply again.

Measurements show that the original power supply delivers
about 9 V when unloaded, which results in an initial charging
current of 250 mA. During charging the current drops rapidly
down to 150 mA. When the battery voltage has reached its

"EPSON AC ADAPTER level of about 6V, the current has fallen to about 50 mA.
Model HOOAAG

INPUT AC 220V 50Hz BW

OUTPUT 556V 600mA A modern regulated power supply of 6 V produced a low initial
camon T current of only 50 mA which quickly drops to 20 mA. After

INDOOR USE ONLY

DO NOT EARTH INSULATED about two hours the current has become zero and the battery

EPSON C ATION

will never be fully charged.

Therefore a replacement power supply must deliver about 9V
and the charging current must be adjusted by inserting a
suitable resistor into the cable. The average current should
reach about 1/10 of the battery capacity (i.e. 200 mA for a

Figure 1: The original power supply 2000 mAh battery).
unit says “6 V” on the label.

Figure 2:

2.2,

e
. F

Ber 1

|

Using a modern, stabilized 9V/4.5W power supply with an inline 2 Watt resistor of 12 Q yields an average
charging current of 200 mA and a charging time of about 12-14 hours. The cable has to be cut anyway to

reverse the polarity. Do not forget to slide the shrink tubing over the cable ends before soldering.

Replacing the Battery

Ready made battery packs with connectors can be found on eBay. I cannot say anything about
their quality, but I would guess that they work fine. If you have the equipment, I recommend
to charge and discharge the battery at least once using an external charger/discharger to
determine their true capacity. Alternatively you can build your own battery pack from single
NiCd cells. NiCd chemistry is preferable because the simple charging circuit (a resistor and a
protection diode) in the HX-20 is designed for these cells. The cells must not be too large —
there are small differences between so called ,,Sub-C* cells and it is better to use smaller cells
than to try to maximize the capacity. A capacity of 1000-1600 mAh is sufficient — you do not
need 2500 mAh.

When working on the HX-20 you must avoid electrostatic charges. Use a grounded metallic or
conducting foam work surface and ground your self using a wrist strap.

Place the computer with the keyboard facing down on a soft mat.

Remove all seven screws on the bottom side and put aside.

Turn the computer over, keeping the upper and lower shells together.

Lift the upper shell at the rear end by about 5 cm. Use the front edge as a hinge. Next you can
unlock the flexprint cable beside the battery pack by pulling the collar upwards. Pull the
ribbon cable carefully upwards, out of the connector.

Now you can open the case completely, again using the front edge as a hinge. Careful with the
two ribbon cables close to the front edge. You can lay both halves flat on our working surface,
keeping the two ribbon cables in their connectors.

Remove the screw in the metal plate over the battery pack and unhook the plate from the case.
Place the new battery close to the computer — if you replace the battery within a few minutes,
memory content will be maintained.

Pull the old battery out of the cavity and unplug the connector.

Plug the new battery in and place it into its cavity.

Insert the metal plate and tighten the screw lightly. In case of a home-made battery pack: be
sure that you do not create a short — the energy content of the battery pack can lead to a fire.
Use your left hand to hold and fold the upper case back over the lower case, using the lower
edge again as a hinge. Hold the rear open and insert the Flexprint cable and close the lock by
pushing the collar down, all with your right hand.

When the case is completely closed, wiggle the lever under the microcassette drive (or ROM
box) slightly right/left to make sure it locks into its counterpart.

4

e Also make sure that the blue cloth ribbon in the printer bay is properly placed and not caught
between the case parts. Also check the proper routing of the printer paper.

e Check the proper placement of the panel with the serial connector cutouts in the rear wall.

e Before replacing the screws: test the system — if you obtain no display you might have to
reattach the flexprint cable properly.

e I[feverything works: replace the screws and pull then hand tight.

2.3. Charging the Battery

The battery should only be recharged when the HX-20 tells you to do so. After charging, the charger
should be unplugged. Figure 3 shows a time history of the charging current obtained with a 9 V power
supply and a series resistor of 12 Q. The charging was initiated after the HX-20 signaled “CHARGE
BATTERY !” and a minimum of the current indicates the completion of the charge. A charging time

of about 12 £1 hours seems to be adequate for the 2000 mAh cells and this charger.
240

220

200

180

/

160

140

120

100

0 2 4 6 8 10 12 14 16
t [h]

Figure 3: Charging current versus time for a NiCd battery pack having a nominal capacity of 2000 mAh.

3. Variations of the ROMs
In Europe, there are at least two versions of the ROMs: they boot as BASIC V1.0 and BASIC V1.1.

The HX-20 cases also differ slightly: older ones have an opening in the bottom cover where the
auxiliary processor is installed, while the later ones do not have this additional opening. So far I
encountered four systems:

e SN 011359, BASIC V1.0: has opening over slave processor
e SN 020734, BASIC V1.1: has opening over slave processor
e SN 040576, BASIC V1.1: has no opening over slave processor
e SN 042951, BASIC V1.1: has no opening over slave processor

4. New Printer Paper

e You can use any non-thermal printer paper with a width of 57...58 mm. In order to fit the tight
space you probably have to roll-your-own from a larger roll of paper. Just take a pencil and
wind a few meters of paper around it, keeping its side edges neatly aligned, remove the pen
and you are ready to go.

5. New Printer Ribbons

e In most cases the old ribbons are dry and produce only weak printout if any. Also the foam
rollers are disintegrating after so many years. Therefore they tend to block the motion of the
endless ribbon. Luckily, even in 2018 new cassettes are still available, because they seem to
be used in printers of some Point-Of-Sales systems.

Figure 4: This ribbon cassette was taken apart to show the internal structure and the disintegrating foam wheels.

6. Internal RAM Boards

Some HX-20 come with an internal memory expansion. Originally Epson had not planned to allow for
internal RAM extensions, but some tinkerers found out, that there was enough space inside the shell to
add a board between keyboard and motherboard. A connector could be clamped onto the solder side
pins of the external bus connector at the left edge of the case. This connection is the weak pint of all
boards — malfunctions are usually resulting from poor contact and I had to replace the flat spring
connectors with strips from a “tuned precision socket” on the “mc” board to make it work again.

The issue April 1984 of the German computer magazine ,,mc* (“MicroComputer”) presented a do-it
yourself circuit layout for an § KB RAM expansion board. If no ROM modules were used, two of
these ,,mc* boards could be added for the maximum of 16 KB RAM.

Similar boards were also produced by various manufacturers. These commercial boards usually came
with 16 KB of RAM or ROM, which could be selected by a setup procedure with the monitor.

6.1.“mc” 8 KB RAM board

Figure 5: A set of two RAM boards as published in “mc” magazine. Both modules are identical and can be switched
to a starting address by a solder bridge (a dip switch in the published design). Another switch can be used
to deactivate each board if a ROM would be installed.

These boards require no special activation. One or two boards can be installed inside the HX-20,
adding 8 to 16 KB of RAM. After installation, the usual full reset sequence is applied:

e Reset (press Reset button)

e Initialise (CTRL+SHIFT+@) / (CTRL+SHIFT+§)
e Start BASIC 2)

e Input PRINT FRE(0) (Return)

The result should be 29275.

6.2. 16 KB RAM board Type 1

ceweeea
o

T
fNfediqaeNsbwna g

¥
-
]

I

- i-h‘

CICECL I LTI T
CE LT ICIE e
E-d Bl l9WH @&
1FE ANV
(XXX R LYY XY

geprift

Figure 6: RAM board Type 1 with eight 2 KB RAM chips and four additional ROM sockets.

In order to make the full RAM capacity available the following procedure has to be applied:

e Reset
e [Initialise
e Start Monitor

e Input
e Input
e Input
e Input
e Input
e Input
e Input

e [Initialisieren
e Start BASIC
e Input

S7E
80

S3B
82

PRINT FRE(O)

Again, the result should be 29275.

(press Reset button)

(CTRL+SHIFT+@) / (CTRL+SHIFT+§)
€]

(Return)

(Return)

(Return)

(Return)

(Return)

(Return)

(Return)

(CTRL+SHIFT+@) / (CTRL+SHIFT+§)
2)

(Return)

POPUBIRUGR

Se b
‘»

evbbpdseer HUUYLITY
s

POFETE NG x
Q0000800086006

Figure 7: RAM board Type 2 produced by Steinwald with eight 2 KB RAM chips and empty footprints for ROM

Sockets under the sticker.

The full RAM activation sequence given for this board is:

e Reset (press Reset button)

e Initialise (CTRL+SHIFT+@) / (CTRL+SHIFT+§)
e Start Monitor (1)

e Input SFFF5 (Return)

e Input 0 (Return)

e Input - (Return)

e Input B (Return)

e Initialise (CTRL+SHIFT+@) / (CTRL+SHIFT+§)
e Start BASIC)

e Input PRINT FRE(0) (Return)

As above, the result should be 29275.

7. HX-20 for the Bundeswehr

The German Army used the HX-20 to determine firing tables for howitzers. Devices from old military
stock appear regularly on eBay Germany, albeit at high asking prices around 100€ because these are
offered by commercial dealers and gold diggers. Keep in mind that these devices have been modified
and usually are not overhauled so that you will have to invest into a new battery as well as a
replacement of the capacitors.

e These devices come in a modified suitcase with

N connectors for an external power supply and a reading
lamp. They also have a memory expansion installed,
which must be activated according to the instruction

sheet.

The manufacturer of these modifications was:
Steinwald Electronic GmbH

Am Sterngrund 1

6590 Marktredwitz

Today the company name is:
STEINWALD datentechnik GmbH
Oskar-Loew-Str. 12
95615 Marktredwitz

Abbldung 8: Die Aktivierungsanleitung.

AUTO
DATE/TIME Loap

Figure 9 Some HX-20 come with a nice label template for tape operation.

8. Replacing the Capacitors

The HX-20 contains 14 electrolytic capacitors on its main board. These have exceeded their useful
lifespan after more than 30 years. In most cases at least some are already leaking and the electrolyte
can be found on the printed circuit board and in the gray discolored solder joints. When trying to run
the HX-20 a weak or flickering LCD screen which cannot be adjusted to full contrast (all pixels dark)
is a sign of bad capacitors. Then it is time to replace all of them. Besides a broken battery pack this
seems to be the second most common problem with the HX-20.

The replacement is simple but tedious because the holes are relatively small and the old solder is
difficult to remove. This is partially caused by the reaction with the electrolyte which seems to change
the properties of the old solder. Despite some experience gained by refurbishing three HX-20, it
usually takes me about two hours to replace all capacitors.

If available all capacitors should be of miniature size — you should revert to the standard size with a
height greater than 7.5 mm only if you cannot source the smaller ones. The standard height capacitors
must be mounted flat on the circuit board in order to fit the board into the case. In this case you have
to bend the wires by 90 degrees. On the other hand this has the advantage that you can solder from

10

both sides and better inspect the soldering joints. I found the miniature capacitors at Reichelt
Elektronik in Germany, however not for all required capacities.

The following electrolytic capacitors are required:

C1,C2,C3,C4, C5, Cé6: 10 uF/16 V 43 mm@ x 7.5 mm
C7,C8 33 uF/16 Vv 6.5mm @ x 7.5 mm
C9, C10, C11,C12 47 uF/16 V 6.5mm@ x 7.5 mm
C13 100 puF/6.3V 6.5mm @ x 7.5 mm
Cl4 1 uF/16V 6.5 mm @ x 7.5 mm

A professional solder sucker of the pistol type is a good tool to remove the old solder, but in some
cases some mechanical rework might be necessary. Be careful not to damage the through-hole
connections between upper and lower board layers.

If you discover electrolyte on the PCB or on the lower side of the old capacitor some cleaning of the
board with water and alcohol should be performed to avoid corrosion.

Be sure that the new solder flows freely through the holes so that both sides of the PCB are wetted.
Wiggling each wire slightly before removing the soldering iron helps the tin to flow through the
narrow gap. To be sure that each solder joint is nice and without stresses I even reflow each joint after
cutting the excess wires.

Figure 10: Some of the nasty culprits.

9. Replacing the Cassette Drive Belt

Most HX-20 are equipped with a micro cassette drive. It comes not as a surprise that the belt of this
drive ages and in the end breaks.

It can be replaced by a rubber belt with a square cross section of 0.8%0.8 mm to 1x1 mm and a circular
inner diameter of about 50 mm. This corresponds to a width of approximately 80 mm when pressed
into a flat shape (2x80 = nx50). The belts I used had a nominal diameter of 49 mm and a nominal
cross section of 1x1 mm. The cross section actually measured more like 1.2x1.2 mm which worked
fine, but is at the upper limit.

You need pointed tweezers, a small Phillips head screwdriver, a de-soldering tool and a soldering iron.

The parts include a few tiny M 1.4 screws, washers and spacers, which should be saved in small
containers to avoid losing them. It may be wise to take some photographs or to make some sketches
during the disassembly.

11

In order to replace the belt one has to partially dismantle the drive:

e Remove the drive box from the HX-20 by pushing the lever on the rear of the HX-20.

e Remove two screws from the bottom and take the bottom shell off.

e Remove the three 3 small screws holding the metal frame in the upper shell. Two screws
above and below the connector and one on the opposite side.

e Unscrew the fourth screw with its small brass spacer at the upper edge of the PCB which fixes
the PCB and the motor carrier in the upper shell.

Figure 11: These screws have to be removed first:
1: Four screws to remove drive assembly from upper shell;

2: two screws to remove PCB from drive frame.

e Carefully remove the upper shell. Open the hatch and slide the shell off. There is a small
internal sheet metal lever for pushing the hatch open. It can be rotated slightly around its
vertical pivot axis to get out of the way. Do not use force, just wiggle the shell a bit and slide
it off at an angle of about 45 degrees.

e Unscrew the two screws holding the PCB on the cast aluminum frame; take care of the two
washers under the screw heads as well as the small stepped spacers under the PCB.

e Note the polarity and unsolder the two wires from the tachometer cap and both motor wires.

e Carefully unfold the PCB from the mechanical assembly. The remaining wires on one side
serve as a “hinge”.

e Remove the metal bridge supporting the large drive wheel and the tension wheel (two screws).

e Unscrew the tachometer cap above the motor (2 screws plus 2 brass spacer tubes).

12

Figure 12: The PCB can be unfolded after unsoldering motor and tachometer cap wires and after removing the bar

across the large drive wheel and the tachometer cap. The new belt has already been installed

Remove the old belt; note how the small white wheel applies tension to the belt.

Install the new belt — it should fit the groves so that its cross section is angled at 45 degrees.
Replace the mechanical parts.

Turn the wheels manually to move the belt and make sure that is moves smoothly without
rubbing against other parts.

Replace all parts, except for the plastic shell covers.

Solder the four wires back to where they belong.

Plug the drive assembly into the HX-20 and make a test run (WIND, FILES, BREAK).

If everything works, replace the two plastic shell parts.

Make sure that the hatch can be opened with the lever; you may have to rotate the small
internal sheet metal lever back so that it properly engages the hatch mechanism.

And that was it — phew!

13

10. Character Sets and Keyboards

The European ROM version of the HX-20 supports different character sets than the International or
Japanese versions. For example the British pound sign is not present.

country code

1 2 4 5 6 7

36 | # ¥ ¥ 2

64 | # i# i@ & e

L [L [i B & i
g gé i & & o i
S 5 u = i
§ 93 1 1 1 & & i = &
E 94 iEi i::Ei i::Ei
= 96 i i i = - - . &
© 123 4 B E] E & i#
124 H H H @ P i) i

125 = * I = # i s #

126 | ™ i i i) i

country SE | DE | FR [DK | SE | DE | FR | NO
ASCII national

Figure 13: Character sets available in the European versions of the HX-20.

The country codes 0, 1 and, 2 have identical ASCII character sets, but different keyboard assignments.

These character bitmaps are stored in the last system ROM which is mapped into the memory range E000-

FFFF. The following character bitmap patterns can be found at the given offsets into this ROM:
|

Offset IBBE...1D9D: 96 characters of 5 bytes (shown below 6 bytes wide as '_ther_apgear onscreen)
Offset 1ESE...1EDO: 23 characters of 5 b_}:te_s_(skl()’\yg below 6 brtes wide as they appear on screen)

Figure 14: Character bitmaps in the system ROM of the HX-20.

Note that the given address ranges are for ROMs which show BASIC Version 1.1 on system start. The
addresses in ROMs of Version 1.0 are shifted by 8 bytes (the data starts at offset IBB6).

The character set can be switched by storing a byte between 0x10 and 0x17 at the address 0x7F and
then executing the subroutine at OXFF6A.

10 POKE &H7F,&H16
20 EXEC &HFF6A

14

11. Loading BASIC Programs via RS-232C

The command

| LOAD "COMO:" |

can be used to load BASIC programs in text format from a second computer. If you have a Windows
system, you can use the RealTerm software to send such files. Without handshaking an inter-character
delay of about 10 ms is required to obtain a correct transmission with the default baud rate of 4800.

The sender should terminate the transfer by sending a last character of CTRL-Z (0x1A). Then the LOAD
command terminates and returns to the command prompt. Otherwise one has to press the BREAK key
on the HX-20 to terminate the transfer.

12. Controlling External Devices

The serial interfaces can be used to control any device with a serial interface. If only a simple on/off
switching function is required, one can also use the “Remote” output of the HX-20. This connection is
intended to control the motor of an external cassette recorder/player. As the schematic shows, it is
completely decoupled from the HX-20 electronics by a relay and thus safe to use for external circuits.

Tc3s
;I 1 HZ‘ZF?iS A0 W

N V25, 170l
g = U
Au

QM
Q—té—]

X
N

100KO
0 GG
v]
T
\
S S S S S S CMT CONN
W W w WWwWw
5 4 3 35 4
| 1] 1
2 2 1 21

!
1
CASETTE -.1(5|DE: @2)

Figure 15: The HX-20 contains a relay to control an external cassette recorder via the REMOTE connector. It can be

controlled by the MOTOR command.

The exact specification of this relay is unknown but the schematic shows a voltage of 5 V and a
5.1 Q/ 1 W current limiter resistor. Thus the current drawn by the external device should never exceed
200 mA — I recommend keeping it below 50 mA at 5 V.

A 2.5 mm mono plug with a small diameter handle is needed for the connection. The small diameter is
required for inserting the plug far enough into the HX-20. As I could only find 2.5 mm plugs with a
too large diameter of the handle, I soldered the wires and then filled its body with epoxy resin. Finally
I used a lathe to turn the diameter of the plastic handle partially down to the required diameter.
Alternatively one could also use some silicone rubber or epoxy putty to create a suitable handle.

15

13. Some Useful Subroutines

13.1. User Defined Characters

The following program fragment can be used to define characters which are assigned to the
GRAPH+0 and following keys. It has to be executed only once after a cold start.

10 REM Define NCHARS Characters

20 NCHARS=1

30 ADDR=&HO0A40

40 MEMSET ADDR+6*NCHARS

50 REM Again, as MEMSET cleared all variables
60 ADDR=&HOA40

70 NCHARS=1

80 LO=ADDR AND &HOOFF

90 HI=(CADDR/256) AND &HOOFF

100 POKE &HO11E,HI

110 POKE &HO11F,LO

120 REM NCHARS Character Bitmap(s) of 6 bytes each
130 DATA 92,98,2,98,92,0

140 RESTORE 130

150 FOR N=1 TO 6*NCHARS

160 READ B

170 POKE ADDR,B

180 ADDR=ADDR+1

190 NEXT N

200 STOP

13.2. Get the Time in Seconds

By converting the return value of the TIMES$ function we can determine the seconds into the day:

210 REM Current Time in Seconds

220 T$=TIMES

230 T#=3600.#*CDBL(VAL(MIDS$(T$,1,2)))
240 T#=T#+60.#*CDBL(VAL(MID$(T$,4,2)))
250 T#=T#+CDBL(VAL(MID$(TS$,7,2)))

260 RETURN

The current time is also maintained in the even memory locations between 0x0040 and 0x0044. It can
be read and converted by the following code fragment:

1000 REM --- TIME ---

1010 T%=0

1020 POKE &HOO7E,PEEK(&HOO7E) OR 128

1030 S%=PEEK(&H0040)

1040 M%=PEEK(&H0042)

1050 H%=PEEK(&H0044)

1060 S%=INT((S% AND &F0)/16)*10+(S% AND &HOF)
1070 M%=INT((M% AND &FO0)/16)*10+(M% AND &HOF)
1080 H%=INT((H% AND &F0)/16)*10+(H% AND &HOF)
1090 IF S%=T% THEN 1030

1100 IF S%>59 THEN 1030

1110 PRINT USING “#d#:##:##" ;H%,M%,S%

1120 PRINT CHR$(&H1E);

1130 T%=S%

1040 T# = 3600.#*H% + 60.#*M% + CDBL(S%)

1150 GOTO 1030

Notes:

e Line 1020 enables access to the low memory region.

16

e Line 1100 catches a problem: the seconds value may be larger than 59, probably when the
PEEK in line 1030 occurs just when the clock is updated.
e Line 1120 moves the cursor back to overwrite the time output line.

13.3. Functions to obtain Low and High Byte of an Integer

230 DEF FNLO$(X%)=CHR$ (X% AND &HFF)
240 DEF FNHI$(X%)=CHR$((X% AND &HFF00)/256)

14. Some Benchmark Results

The following table lists some execution times for the infamous BYTE Benchmark “Eratosthenes
Primes” [3]. The times given for these roughly comparable systems are all for 10 iterations.

Computer | Year | CPU Type and Speed | Programming Language | Time
HX-20 6301 @ 0.614 MHz BASIC 4050 s
HX-20 6301 @ 0.614 MHz Assembler 17s
T1-99/4 TMS 9900 @ 3.0 MHz TI-BASIC 3960 s

PET 6502 BASIC 3180s

Apple][6502 @ 1.02 MHz Applesoft BASIC 2806 s

HP-85 1980 | Capricorn @ 625 kHz BASIC 3084 s
HP-85 Capricorn @ 625 kHz Assembler 21ls

TRS-80/11 1977 Z-80 MBASIC 2250's
IBM PC 1981 8088 @ 4.77 MHz BASICA 1990s

Table 1: Execution times for the BYTE benchmark.

We can clearly see that the HX-20 in BASIC mode is not exactly the fastest computer. In order to
restore the honor of this machine I wrote an assembler version of the benchmark. As I had no
experience with the 6800 family and the Hitachi 6301, the code is surely not optimized but the results
should give a good estimate of what is possible.

The infamous BYTE Benchmark Eratosthenes Sieve.

For the Epson HX/20 with Hitachi HS 6301 CPU.

This assembly language program performs 10 loops

of the Sieve benchmark.

The number of primes is saved in variable "C" at
address OxO0ADA. The correct result is 1899 (0x076B).

; Enter the hex bytes starting at address 0xA40
; using the Monitor.
; Start with
; S0A40

; When the code up to address 0AD3 has been entered,
; it can be executed from 0A40 until the PC reaches
; OABE (Label STOP):

; GOA40,0ABE

Assembled from the ASM source with the a09 assembler:
a09 -oHOl1l sieve.asm -Lsieve.lst

References:
BYTE Magazine, January 1983

: Created 12/2018 Martin Hepperle

0A40
0A42

0A45
0A48
0A4B
0A4D

0A50
0A53
0A56

0A59
0A5C
OASF
0A62
0A65
0A67

0AGA
0A6D
0A70

0A73
0A74
0A77

0A79
0A7C
OA7F
0A80
0A82

0A84
0A87
0A8A
0A8D

0A90
0A93

0A96
0A99
0A9C

O0A9F
0AA2
0AA5

0AA7
0AAA
0AAD

0ABO

860A
B70AD4

CCoo01
FDOAD9
8601

B70ADD

CCOAEO
FDOADE
BDOABF

CC0000
FDOAD5S
CCFFFF
FDOAD7
8600

B70ADD

FCOAD7
C30001
FDOAD7

18
8C1FFF
273C

CCOAEO
F30AD7
18
A600
27E6

FCOAD7
F30AD7
C30003
FDOAD9

F30AD7
FDOADB

FCOAD5S
C30001
FDOAD5S

FEOADB
8C1FFE
2EC3

CCOAEO
F30ADB
FDOADE

BDOABF

AGAIN

NEXT

OPT HO1 ; Hitachi 6301

ORG $0A40

LDAA #$0A ; 10 times

STAA REP ; repeat count

; set FLAG(0:8190)=1

LDD #$0001 ; step size=1

STD P

LDAA #$01 ; set flag

STAA F

; starting address

LDD #FLAG ; load address of FLAG, use as...
STD FPTR ; ...starting address for FILL
JSR FILL ; set *FPTR, *(FPTR+1), ... to F=1
; preparation of Toop

LDD #$0000 ; PRIMES=0

STD C

LDD #$FFFF ; I=-1 for starting loop at 0
STD I

LDAA #$00 ; clear flag

STAA F

; I-Toop from 0 to 8190

LDD I

ADDD #$00001

STD I ; I=I+1

; compare I against 8191

XGDX ; D->X

CPX #$1FFF

BEQ FINI ; end of Toop

; FLAG[I] == 07

LDD #FLAG ; load address of FLAG

ADDD I ; address of FLAG[I]

XGDX ; D->X

LDAA $00,X ; get value from FLAG[I]

BEQ NEXT ; if already ZERO: continue I Toop
LDD I |

ADDD I ; I+

ADDD #$3 ; I+I+3

STD P

ADDD I ; K=P+I

STD K

LDD C

ADDD #$00001 ; PRIMES=PRIMES+1

STD C

; K > 81907

LDX K

CPX #$1FFE ; 8190

BGT NEXT ; continue with Toop

; for J=K to 8190 step P
; starting address

LDD #FLAG
ADDD K
STD FPTR

JSR FILL

; load address of FLAG[K]...
; ...and use as...
; ...starting address for FILL

; set *(FPTR+K), *(FPTR+K+P),

18

0AB3 20B5 BRA NEXT
; all done, check C

0AB5 B60AD4 FINI LDAA REP ; repeat count
0AB8 4A DECA
0AB9 B70AD4 STAA REP
0ABC 2687 BNE AGAIN ; not yet finished
OABE 39 STOP RTS
; fi11 FLAG array from *BPTR with F step P

OABF FEOADE FILL LDX FPTR ; address in BPTR = FLAG[J]
0AC2 8C2ADE LOOP CPX #FLGE ; address of last byte in FLAG
0AC5 2EOC BGT DONE ; beyond end of FLAG[]: leave Tloop
0AC7 B60ADD LDAA F ; flag value to set (byte)
0ACA A700 STAA $00,X ; insert value into FLAG[J]
0ACC 18 XGDX ; X<->D
OACD F30AD9 ADDD P ; how D has X+P
0ADO 18 XGDX ; bring X+P back to X
0AD1 20EF BRA LOOP ; again
0AD3 39 DONE RTS ; done
0AD4 00 REP FCB $00
0AD5 0000 C FDB $0000 ; prime count, 1899d = 076Bh
0AD7 0000 I FDB $0000 ; loop count
0AD9 0000 P FDB $0000 ; step size
0ADB 0000 K FDB $0000 ; starting index
OADD 00 F FCB $00 ; value to set
OADE 0000 FPTR FDB $0000 ; pointer to array element

FLAG ; flag array
0AEO 00000000000000 FILL $00,8190 ; fill with zero

OAE7 00000000000000

2ADE 00 FLGE FCB $00 ; last byte in FLAG array
END

15. Writing Machine Language Routines

When I ran the BYTE benchmark "Eratosthenes Sieve" in BASIC, I was disappointed by the low
performance. Experience from the HP-85 hinted that writing the code in machine language (using an
assembler) could accelerate the program by a huge factor. Therefore I started to search for ways to
write and use assembler programs for the HX-20.

The BASIC Reference Manual contains a brief explanation how to call machine language subroutines
with the EXEC and USR functions. It also explains the structure of BASIC variables so that these can be
accessed by machine language programs.

This BASIC interface is rather limited, though: the EXEC function does not take any parameters and the
USR function can take only one. Also the USR function always returns the same type as its parameter,
i.e. if the parameter is an integer, the function return type must also be integer (there is a way to
change this by placing the result in the FPACC memory location and by adapting the type information
in 0x0085-0x0086). If more than one parameter has to be transferred these parameters could be copied
to predefined global memory locations so that they can be accessed from BASIC as well as from the
machine language program. Another option is to wrap the parameters into the bytes of a string and
write the USR function to split this string parameter into its components.

19

In Figure 16 I show the register set of the 6301 in comparison to the well-known 6800 and 6809. It can
be seen that assembler code for the 6800 should be fairly easy to translate for the 6301. The 6809 has
more registers making a translation more difficult.

For more information about programming the Hitachi 6301 one should consult the data sheet of the
6301 and books about the 6800 processor family. I could not find any specific book about the 6301,
though.

6802 68000

+ clock
it
+Y register /7
+ D register i
M opcogdes 6803 + USP register

+ DP register /
6800 —— - 6801 6301 ——= 6809

all new opcodes

NMOS *ROM ~ NMOS CMOS *more NMOS
~———16 bit—— e ~———16-bit——= ~———16-bit——=
~—8-bit—==—8-bit—= ~—8-bit—==—8bit—= ~—8-bit—=—=—8bit—=

Accumulator | A | B | . A | B |=D . A | B |=D
X X
Program Counter
User Stack Pointer
Condition Code [CCR CCR
Direct Page
HX-20

Figure 16: Registers of the 6301 and the related 6800 processor family.

An introduction into the 6301 CPU and its assembler language mnemonics is given in the book by
Balkan [4]. It even contains a listing of an assembler written in BASIC and running on the HX-20 or
other machines with Microsoft BASIC.

Unfortunately the listing seems to have been typeset manually so that it contains about a dozen typos
as well as one major bug. [used this assembler for my first exploratory steps (after fixing the typos
and the bug and running it on a CP/M emulator with MBASIC). However, due to memory limitations
of the 16 KB HX-20, this assembler is rather minimalistic.

Therefore I searched again and found the A09 assembler which had also been extended to cover the
6301 opcodes. This assembler comes in plain “C” and I compiled and executed it on a Windows
system. It can produce listings as well as binary and hexadecimal output. After fixing one bug in its
6301 opcode table it worked fine (by now, the fix should be integrated into the official release).

In order to load the assembled code to the HX-20 I wrote a small Python script which reads the listing
file produced by A09 and transforms the code into a BASIC loader program, complete with MEMSET,
DATA and the required POKE commands.

The transfer of this BASIC program to the HX-20 is accomplished by the RealTerm program at 4800
baud with an inter-character delay of 10 ms.

Thus my process is

e Connect both machines with the proper RS-232C cable.
e Onthe PC:
0 assemble the code with A09,
0 convert the output to BASIC loader using LST2BAS. py,
20

0 set the communication parameters to 4800 baud, 8 bits, no parity, no handshaking and
1 stop bit,
e Onthe HX-20
O execute LOAD "COMO: (68N1E)" to prepare for loading the program into the HX-20.
e On the PC:
0 use RealTerm to send the BASIC program to the HX-20,
O wait until the program has been transferred.
e on the HX-20
0 inspect and execute the BASIC program,
0 this last step will actually write the machine code into memory.

After the machine code has been poked into memory, it stays there as long as no MEMSET command
reduces the amount of reserved memory or another machine code program overwrites this memory.
This means that the BASIC loader program has to be run only once. On the other hand, it does not hurt
to run it again, if you want to be sure that the memory has not been altered. After loading, the machine
code can also be saved to and read from the microcassette using the SAVEM respectively the LOADM
commands. Unfortunately it seems to be impossible to save and restore binary programs via the RS-
232C interface.

If the machine code sequence in the DATA statements would become very large, one could modify the
loader program to read the DATA from the RS-232C port. It could then also be used to load any
machine code sequence. So far I wrote only small programs so that this was not necessary and I found
it more convenient to keep the machine code together with the loader in a single program.

The Python script:

This is a simple tool to convert the Tisting produced by the
A09 assembler into Epson HX-20 BASIC statements.

The resulting BASIC program loads the machine code into memory.
The code can then be executed by an EXEC statement.

In the DATA statement starting addresses for a range of opcodes
or data are identifiable by a length of four characters.
A1l opcodes or data bytes are two characters long.

import sys

def go(s):
For Epson HX-20.
Convert 6301 assembler listing file "s" into BASIC.

fIn = open(s);
ss = fIn.readlines();
fIn.close(Q);

nLines = len(ss);

there values have to be adapted

where the PRINT "Done." is placed
nStop = 120

where the HEX->DEC subroutines start
nHex = nStop + 50

nHex4 = nHex + 40

nHex2 = nHex + 70

n = 10

print str(n)+' REM --- Epson HX-20 -—-'
n = n+10

print str(n)+'
n = n+10
print str(n)+'
n = n+l10

skip MEMSET 1
nMemSet = n

n = n+10
print str(n)+'
n = n+10
nLoop = n
print str(n)+'
n = n+10
print str(n)+'
n = n+10
print str(n)+'
n = n+l10
print str(n)+'
n = n+10

new address,
print str(n)+'
n = n+10

new opcode
print str(n)+'
n = n+10

if n>nStop:
pr--i nt Vekd E

n nStop
print str(n)+'
n = n+10
print str(n)+'
n = n+10
print str(n)+'
n = n+l10
print str(n)+'
n = n+10
print str(n)+'
n = n+10
print str(n)+'
n = n+l10
print str(n)+'
n = n+10

nHexDigit = n+8
print str(n) +
n = n+10

print str(n) +
n = n+10

print str(n) +
n = n+10

print str(n) +
n = n+l10

print str(n) +
n = n+10

print str(n) +
n = n+10

print str(n) +
n = n+l10

print str(n) +
n = n+10

nHexDigit
print str(n) +
n = n+10

print str(n) +
n = n+l10

n

Tine=0;
address = 0

startAddress

endAddress = 0

sLine =

REM --- Hex Code Loader ---'
REM --- M. Hepperle 2018 ---'
ine

N%=0"

READ C$'

IF C$="DONE" THEN '+str(nStop)

N%=N%+1 : IF N%=8 THEN PRINT "."; : N%=0'

C%=0 : I%=1'

DATA MUST start with an address!

IF LEN(C$)=4 THEN GOSUB ' + str(nHex4) + ' : A% = C% : GOTO '+str(nLoop)

GOSUB ' + str(nHex2) + ' : POKE A%,C% : A%=A%+1 : GOTO '+str(nLoop)

RROR: 1increase nStop to at Teast '+str(n)

PRINT "Done."'

REM --- call the function'

DEFUSR1=&H0A40'

PRINT USR1(CHR$(0)+CHR$(32)+CHR$(0)+CHR$(64)+"Hello World")'
REM or (if no parameters):'

REM EXEC &HOA40'

END'

0

REM C$(HEX) -> C%(DEC), set (%=0 and I%=1 before GOSUB'

REM Entry HEX4'

' X$=MID$(C$,I%,1) : GOSUB '+str(nHexDigit) + ' : C%=C%+4096%*X% : I%=I%+1'
' X$=MID$(C$,I%,1) : GOSUB '+str(nHexDigit) + ' : C%=C%+256*X% : I%=I%+1'
' REM Entry HEX2'

' X$=MID$(C$,I%,1) : GOSUB '+str(nHexDigit) + ' : C%=C%+16*X% : I%=I%+1"'

' X$=MID$(C$,I%,1) : GOSUB '+str(nHexDigit) + ' : C%=C%+X%'

RETURN'

X%=ASC(X$) : IF X%>64 THEN X%=X%-55 ELSE X%=X%-48'

RETURN'

65536

22

while Tine < nLines:
1 = ss[1ine].replace("\n","")

this is the End
if 1.startswith('SYMBOL TABLE'):
break

continuation Tine has no blank in the first column
if 1[0:1] != ' ':
#{
skip
Tine = Tline+l
continue
#1}

addr = 1[1:5].stripQ

if len(addr) == 4:
#{
try:
#{
addrDec = int(addr,16)

if addrDec < startAddress:
#{

startAddress = addrDec
#1

if addrDec > endAddress:
#{

endAddress = addrDec
#1}

if addrDec !'= address:
#{
a step in addresses -
output new start address
address = addrDec
sLine = sLine + addr + ',"'
#1

opcodes = 1[6:20].stripQ)
i=0

while i < len(opcodes):

#{
sLine = sLine + opcodes[i:i+2] + ','
i=i+2

update high water mark
if address > endAddress:
#{

endAddress = address
#1}

next free address or start of BASIC for MEMSET
address = address+1

if len(sLine)>57:
#{
print str(n) + ' DATA ' + sLine[0:1en(sLine)-1]
sLine = "'
n = n+l
#1}
#1
#1}
except:
#{
addrDec = 0
#1}
#1}

Tine = Tline+l
if 1ine > 50000:

23

#{
break
#1}

sLine = sLine + 'DONE,'

if len(sLine)>0:
print str(n) + ' DATA ' + sLine[0:1en(sLine)-1]
sLine = "'
n = n+10

insert MEMSET line above
print str(nMemSet) + ' MEMSET &H' + hex(endAddress+1) .upper()[2:]

terminate transfer with AZ
print '\032'

if 1==1:
print 'The binary code resides between'
print ' &H'+hex(startAddress) .upper()[2:]+' and &' + hex(endAddress) .upper(Q[2:]+"."
print 'Thus we need to shift the start of the BASIC'
print 'program and data area to &H' + hex(endAddress+1).upper()[2:] +
print 'The assembler code should end with an RTS instruction.'
print 'If the code requires no parameters, you can execute it with'
print "EXEC &H' + hex(startAddress).upper()[2:]
print 'If it takes a parameter, wrap it into a USR function.'

if __name__ == "__main__":

if len(sys.argv)>1:
basePath = "D:\\HP\\Epson HX-20\\ASM\\"
basePath A
fileName sys.argv[1l]
go(basePath + fileName)

else:
print 'Usage: LST2BAS Tisting.lst'

15.1. Some Details about HX-20 BASIC (Microsoft BASIC)

15.1.1. The Floating Point Accumulator

Microsoft BASIC maintains a so called “floating point accumulator” (FPACC). This is a memory area
used for intermediate results when working with 16-bit integer as well as single and double floating
point numbers. It is also used to transfer a numeric parameter to a USR function. Its length is 8 bytes to
hold a double precision floating point number. The arrangement of the bytes can be found in the
BASIC reference manual. The location of the FPACC is at address 0x00D5 in RAM.

15.1.2. Memory allocation of Arrays

Allocation of a one-dimensional INTEGER array:

DIM N%(5)
A%=VARPTR (N%(0))

The VARPTR function returns the address of the first array element (0). In memory this is followed the
next element (1).

Allocation of a two-dimensional INTEGER array:

DIM N%(5,6)
A%=VARPTR(N%(0,0))

24

The VARPTR function returns the address of the first array element (0, 0). In memory this is followed
the next element (1,0), i.e. the first index is incremented first.

Note: the examples above use the default OPTION BASE O setting. [f OPTION BASE 1 is used, the first
element is (1), respectively (1,1).

15.1.3. The BASIC Work Areas

Work Area (1)

Example memory dump:
00000080 00 22 00 00 00 04 00 00 00 00 00 08 6C 08 69 1D .".......... 1.4.
0085-0086: <---> TypeInfo for data in FPACC
00000090 7E 1D 80 00 00 00 00 OA 00 00 7D 65 OB OC 1D 7C ~......... le...|
009C-009D: <---> HeadPointer:

address of address-
field of first Tine
009E-009F: <---> StringSpace:
address of
string space

000000A0 1D 84 1D 84 7D 89 7E 51 7E 51 7E 51 07 DA 07 DA}.~Q~Q~Q....
00A0-00A1l:<---> NextFree? address of next free entry in string space
00A2-00A3: <---> NextFree? address of next free entry in string space

000000B0O 07 DO 00 00 10 8D 00 00 OB OB 00 00 01 1D 7E 1D ~.

00B8-00B9: <---> DataPointer: address of separator
of next Tine for READ
00BA-00BB: <---> TailPointer: address of Tlast

line (after program was run)
000000CO 82 00 00 00 1D 84 1D 80 00 00 00 00 00 00 04 BDcuuuunnn
000000D0O 00 00 00 OO 00 88 00 00 D8 00 00 00 00 00O OO0 OLvvvvevennnnn

00D5-00DC: Lemmmo=e FPACC ------- > Floating Point
Accumulator
000000EO 7E 51 00 00 00 00 E6 00 00 00 00 00 00 00 10 76 ~Q.....vvvuunn. v

000000F0 1D 7D 08 5D 00 00 OE 00 5F 00 B6 10 9B 7E B3 D8 .}.]...._....~..

Work Area (2)

Example memory dump:

000005B0 00 00 00 88 DF 00 00 00 88 DF 00 00 00 00 00 00
000005C0O 00 00 00 00 00 OO0 00O OO OO0 OO OO0 00 00 00 00 OO0cuunnn
000005D0 00 00 00 00 00 OO0 00 00O B4 F3 00 00 00 00 00 OO0un..

000005E0 00 00 7E 8C 70 7E 8C 70 7E 8C 70 7E A6 71 7E A6 ..~.p~.p~.p~.Q~.
<---0--> <---1--> <---2--> <---3--> <---- 39 error handlers
000005F0 71 7E A6 71 7E A6 71 7E A6 71 7E A6 71 7E A6 71 gq~.g~.Q~.Q~.Q~.(
-> <--—-——= P > <————--- > <———--- > <————-- >
00000600 7E A6 71 7E A6 71 7E A6 71 39 A6 71 39 A6 71 39 ~.g~.0~.99.99.99
<-=-———= > <————-- > <————-- > <———--—- > <———--- > <-
00000610 A6 71 39 A6 71 39 A6 71 39 A6 71 39 A6 71 39 A6 .09.99.99.99.99.
————> <= > <———--- > <————-- > <———--- > <———-
00000620 71 39 A6 71 39 A6 71 39 A6 71 39 A6 71 39 A6 71 99.99.99.99.99.¢
-> <--———= > <———-—- > <————-- > <—————- > <————-- >
00000630 39 A6 71 39 A6 71 39 A6 71 39 A6 71 39 A6 71 39 9.99.99.99.99.99
<——-——- > <————-- > <—————- > <———-—- > <—————- > <-
00000640 A6 71 39 A6 71 39 A6 71 39 A6 71 7E 88 DF 7E 88 .g9.99.99.9~..~.
soooP Feoosoo > oos==s > eosoos > ooss=o > <----

00000650 DF 7E 88 DF 7E 88 DF 06 9C 06 B6 06 DO 06 EA 07 .~..~
-> <--37--> <--38--> <-0-> <-1-> <-2-> <-3-> <- 16 DCB Addresses

00000660 04 07 1E 07 38 00 00 00 00 00 OO0 OO OO OO OO OO8...........
-> <-5-> <-6-> <-7-> <-8-> <-9-> <-0-> <-1-> <-

00000670 00 00 00 00 00 00 00 00 22 00 00 00 OO OO OO OO R
-> <-3-> <-4-> <-5->

00000680
00000690
069C:
000006A0
000006B0O
06B6:
000006C0O
000006D0
06D0:
000006E0
06EA:
000006F0
00000700
0704:
00000710
071E:
00000720

00000730
0738:
00000740
00000750
00000760
00000770
00000780
00000790
000007A0
000007B0O
000007CO
000007D0
000007EO
000007F0
00000800
00000810
00000820
00000830
00000840
00000850
00000860
00000870
00000880
00000890
000008A0
000008B0O
08B5-
000008CO

-08CE:

08CF-

000008D0
000008E0

-08E2:

000008F0
00000900
00000910
00000920
00000930
00000940
00000950
00000960
00000970
00000980
00000990
000009A0
000009B0O
000009C0O
000009D0

00
00

E4
00

E4
30

00
00

A9
80

B3
BO

04

04

20
00

E4
20

00
43

43

E4
8D

00

04

type code
04 04 04 04

01
00

B3
B3

E4 BO

18 OE
00 00
20 20
20 29
2C 46
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00

00 00
51 00
00 00
00 00
OA 1D
00 10
04 04
A-Z ----
04 04 8C

<-

default
8C 70 8C
20 20 20

00
00
20
00
00
00

00
00
F9
00
00
00

00
00
68
00
00
00

00 00 ..
FF B6 .

8N1E..... p..KYBD
Name of DO
...... i.0.......

Name of D2
..(.(....@CASO00.
Name of D3

Name of D4
Pl 1o ... PA
Name of D5

10 addresses of
USRO-9 functions
in BASIC ROM

p.p.p.p.p-p.p.p-

000009EO 00 00 00 00 00 00 00 OO0 OO0 OO 00 00 00 00 00 OO0cuunnn
000009F0 00 00 00 00 00 00 00 00 OO0 00O 00 00 00 00 00 OO0cuiunnn
00000A00 00 00 00 00 00 00 00 00 OO0 OO OO0 00 00 00 00 OO0cuunnn
00000A10 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 OO0cuounnn
00000A20 00 00 00 00 00 00 00 FF 00 14 04 08 00 00 00 00un..
00000A30 00 00 01 00 00 39 00 00 01 00 00 01 01 00 00 O1 Soonooonnon

16. Using a Printer

An Epson P-40 printer (or any other printer with serial interface) can easily be connected to the RS-
232C port of the HX-20. However, as the buffer of the P-40 is only 2 bytes, data transfer will only
work properly if you wire the cable for hardware handshaking. This requires the connection of the
printer handshake signal DTR to the HX-20 input signal DSR on pin 6 of the DIN connector.

You can then use commands like

| LIST “CoMO: (68N2B)”

to list a program on a printer set to 4800 baud and 8 data bits, no parity and two stop bits

Similarly, the statement

| OPEN “0”,#1,”COMO: (68N2B)”

can be use in a program to open a file for output with subsequent PRINT #1 statements. When done
with printing, you should close the serial port with a CLOSE #1 statement.

17. MH-20 — A Peripheral Emulator

The “MH-20" software runs on a PC and mimics two different peripherals for the HX-20:

e adisplay controller for text and graphics output and,
e adisk drive units with four disk drives (which equals two TF-20 drives).

While the display function is readily available with the HX-20, the disk drive emulation requires the
setting of the switch SW4 to the ON position. This switch is accessible from the bottom of the HX-20.
See the “Operating Manual”, page 2-1.

DC-20 TF-20 TF-20

al
(1)
()

MH-20

OO0

HX-20

Figure 17: Schematic of the HX-20 with the MH-20 software.

27

17.1. Required Hardware for HX-20

The MH-20 program listens on the serial RS-232C port of your computer which must be connected to
the high speed serial port of the HX-20. The emulator sets the serial port on the PC side to 38400
baud, 8 data bits, 1 stop bit, no parity and no handshaking. The wiring of a cable connecting the HX-
20 with a standard IBM-AT-style D-SUB 9 pin male connector is shown in Figure 18. The common
USB-RS-232C converter cables usually come with a matching male D-SUB connector and can be

used.
RS-232C
. DB9 - female
Serial view on solder cups
DIN - 5-pin
view on solder cups TXD RXD GND
RXD - 3’ 1-GND
PIN
2-TXD

GND 1%*5 GND
TXD 22 TXD
RXD 33 RXD
High-Speed Cable
(for connecting to a PC)

Figure 18: Cable to connect to HX-20 to a PC running the MH-20 screen and disk emulator. Only 3 wires are needed.

17.2. Using the MH-20 Software

MH-20 is written in Java and therefore is executable on many common platforms. You need a Java
Runtime Environment (JRE) of Version 1.8 or higher. For the serial communication it relies on the
jSSC (Java Simple Serial Connector) serial port communication library. This library includes system
dependent hardware drivers for Linux, Mac OS/X, Solaris and Windows 32 as well as Windows 64.

You can start the simulator from a command line and supply these optional command line arguments:
e -port PORT

default: PORT=COMI1

The device name of your serial port. You must use the proper syntax for your operating
system, e.g. for higher port numbers under Windows: *“/..//COM38”, omit any trailing
colon.

-width WIDTH

The width of the window in character columns. Default: WIDTH=80

-height HEIGHT
The height of the window in character rows. Default: HEIGHT=48

-diskconfig TYPE

The arrangement of disk drives. Use TYPE=0 for HX-20 (you can use the emulator also
for the PX-8 and for this application other configurations are available)

-debug

Activates output of debug information.

28

In a Windows command prompt you can enter a command line for the HX-20 like

| java -jar MH-20-Display-Controller.jar -port /..//COM38 -width 80 -height 24 |

Of course you can and should wrap this long command into a . cmd script file.

Under Linux you might have the problem that the serial port is usually not accessible by normal users.
You have to be a super-user to work with it. Two options to handle this problem are listed below.

e Create a shell script (text file) e.g. “mh20dc.sh” with the desired command line options. Port
access may require administrator rights. Therefore you can use sudo which asks for the
superuser password.

#!/bin/sh
sudo java -jar MH-20-Display-Controller.jar -port /dev/ttySO

or

* You can also make your script file “mh20dc.sh” set the superuser-bit by itself:

| sudo chmod +s mh20.sh

Then your script would need no sudo command, but just the command line

#!/bin/sh
java -jar MH-20-Display-Controller.jar -port /dev/ttySO

In both cases you can run the program by executing your script

./mh20.sh

17.3. Display Controller Emulation

The MH-20 program mimics an external display controller similar to the ones which were available in
its day. One such device was the Oval HO-80 from Oval Ltd., a British company, which delivered its
video output in form of UHF or PAL signals. Its screen was able to show 32x16 characters or 128x64
pixels in 4 colors or 128%96 pixels in monochrome.

My goal was not a faithful representation of this device (which I even don’t own) and its limitations
but mainly to allow for easier reading and editing of programs for the HX-20. Editing programs on the
small built-in LCD screen is not really fun — at least for me.

The HX-20 display system supports two operating modes: text mode and graphics mode. Both are
partially implemented in the MH-20 software. The text mode offers all cursor movement and editing
functions. The special graphics characters are also displayed, but no attempt has been made to
implement user defined characters. I even don’t know whether the original display controller was able
to handle those.

After the text mode worked sufficiently well for practical application I added some of the graphics
functions. These allow clearing the screen (GCLS), drawing lines (LINE) and setting points (PSET) and
inquiring the color of pixels (POINT).

Like with the original display controller, graphics and text screen are handled as exclusive entities.
The MH-20 is either in text or in graphics mode - you cannot mix graphics and text.

However, to allow writing text in graphics mode I implemented an additional command to write a
string of characters to the graphics screen. However, this requires the usage of a machine code
subroutine to send out the proper data frames.

29

17.3.1. Applicable BASIC Keywords and Commands

Selecting the Output Device

Purpose

SCREEN 1,0

Send subsequent text output to the display controller.

SCREEN 0,1 Send subsequent graphics output to the display controller.

SCREEN 0,0 Send all subsequent output to the LCD display.
The SCREEN command also selects the character set according to the
current system settings.

Text Mode Purpose

CLS Clear the screen.

PRINT Print output to the screen.

LIST List the current program on the screen.

WIDTH width,height

Set the dimensions of the text screen in character cells.

POS

Return the horizontal position x of the cursor.

CRSLIN

Return the vertical position y of the cursor.

LOCATE x,y,cursor

Place the cursor at (x,y), e.g. for a following PRINT statement.

Graphics Mode

Purpose

GCLS

Clear the graphics screen.

COLOR fore,back,set

Select foreground and background color for the given color set.

PSET (x,y),index

Set the pixel at (x,y) with the given color [0...3].

PSET (x,y)

Set the pixel at (x,y) with the current foreground color.

PRESET (x,y)

Set the pixel at (x,y) with the current background color.

LINE (x1,y1l)-(x2,y2),PSET

Draw a line from (x1,y1) to (x2,y2) with the foreground color.

LINE (x1,yl)-(x2,y2),PRESET

Draw a line from (x1,y1) to (x2,y2) with the background color.

POINT (x,y)

Return the color index of the pixel at (x,y).[0...3, 10...13]

30

Figure 19: MH-20 in text mode after a SCREEN 1,0 and a LIST command.

The caption bar shows the dimensions in character cells as well as in pixels.

Some differences from the Epson Specifications:

Only a subset of the possible commands has been implemented. The program may handle
unknown commands ungracefully.

Text lines extending over multiple screen lines are not supported. Each line must fit on one
line.

In graphics mode, all dimensions have been doubled for better visibility — i.e. a line is drawn
two pixels wide. The screen dimensions in pixels as shown in the title bar reflect this scaling
and show the available coordinate space.

The screen size can be considerably larger than that of the original display controller. Its size
was limited to a text display of 16x32 characters respectively resolutions of 128%96 for
monochrome graphics or 128%64 for color graphics.

The size of the graphics screen is directly linked to the text screen size and cannot be changed.
No movable window is implemented as this does not make too much sense on this larger
screen.

Both color sets of 4 colors each have been implemented as per specification. As they are only
vaguely specified the default background color “green” has been made dark to have the
default text color “yellow” stand out sufficiently. It is possible to use both color sets on the
same screen, which was probably not possible on the original hardware.

The POINT function returns 0...3 for colors in the color set 0, and 10...13 for colors from set
2. This allows distinguishing between the two color sets. The original hardware probably only
returned values within 0...3.

A context menu (right mouse button) allows copying the contents of the display to the
clipboard. Depending on the current display mode, text and/or bitmap format are available.

=e &=

Figure 20: Result of running a simple plot programs.

Left: The same program runs on the internal LCD. For the external screen only a SCREEN 0,1
command and individual scaling factors for the x- and y-direction have been added.
Right: The two color palettes (0 and 1) with 4 colors each, selected by using the COLOR command. The first

bar (color index 0) represents the default background color of each color set.

31

T T T T ©° 1T T T

9.258 ©8.5880 6.750 1.988 1.258 1.588 1.758

Figure 21: In contrast to the original Display Controller the software emulator can also display characters if a special

machine language subroutine is used.

The example shown in Figure 21 uses a machine language subroutine to send a special data packet to
the MH-20 Display Controller. The parameters of this subroutine are the X, and Y coordinates as well
as the string to output. These are packed into a string because USR functions only allow for one

parameter.
; 209 outchar.asm -Toutchar.lst
; python LST2BAS.py outchar.lst > outchar.bas
OPT HO1
ORG $0A40

BUFLEN EQU 32 ; max. string length
SERSND EQU $FF70 ; operating system function
; BASIC floating point accumulator to return result
FPTYP EQU $0085 ; 2 bytes: type of # in FPACC
FPACC EQU $00D5 ; floating point accumulator
; Epson HX-20
; USR function for sending a string with Teading
; 16-bit x-y coordinates via serial interface.
; The string may have up to BUFLEN characters.
; Returns the length of the output string
; (minus the 4 Teading bytes)
; Usage:
; DEFUSR1=&H0A40
; DEFFNLO$ (X%)=CHR$ (X% AND &HOF)
; DEFFNHI$ (X%)=CHR$ ((X%\8) AND &HOF)
: X=25 : Y=50
; M$=FNHI$(X)+FNLOS(X)+FNHI$CY)+FNLO$(Y)
; L=USR1(M$+"Hello World")
; X points to string descriptor:
; 0,X: Tength of string, must be >4
; 1,X: address of string

0A40 8103 CMPA #3$03 ; do we have a string?

0A42 2653 BNE 00PS ; no: leave

0A44 E600 LDAB 0,X ; length of string -> B

32

0A46
0A47
0A4A
0A4C
0A4E
0A50
0A52

0A54
0A56
0A58
0A59
0A5B

0A5D
OASF
0A61
0A64
0A66
0A69
0A6B
OAGE
0A70

0A73
0A74
0A77
0A7A

0A7B
0A7D
O0A7E
0A81
0A83
0A84
0A85
0A88
0A8A
0A8D
OA8E

0A90
0A91

0A94
0A97

0A98

0A9A
0A9B
0A9C
0A9D
O0A9E

O0A9F
0AAL
0AA3
0AAA
0AB1
OABS8
OABF

5A
F70A9E
Cc003
2F49
C120
2F02
€620

9602
9785
4F

97D7
D7D8

EEO1
A600
B70A9F
A601
B70AAQ
A602
B70AAl
A603
B70AA2

37
CCOAA3
FDOA98
33

A604
3C
FEOA98
A700
38

08
7COA99
2803
7COA98
5A
26EB

4F
CEOA9A

BDFF70
39

FFFF

00
30
20
EE
03

FFFF
FFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFFFFFFFF
FFFFFFFF

LENOK:

NEXT:

NOVER

O0PS:
CPTR:

PACKET:
OP:
DID:
SID:
FCN:
CNT:

DATA:
XPNT:
YPNT

CHAR:

DECB
STAB
SUBB
BLE

CMPB
BLE

LDAB

LDAA
STAA
CLRA
STAA
STAB
LDX

LDAA
STAA
LDAA
STAA
LDAA
STAA
LDAA
STAA

PSHB
LDD
STD
PULB

CNT
#3$03
00PS
#BUFLEN
LENOK
#BUFLEN

$02
FPTYP

FPACC+2
FPACC+3

1,X
0,X
XPNT
1,X
XPNT+1
2,X
YPNT
3,X
YPNT+1

#CHAR
CPTR

minus 1 = data Tlength
store data Tlength

minus X,Y

less than one character?
up to BUFLEN chars

min(N, BUFLEN)

return data type: integer
type of # in FPACC

store integer in FPACC+2,3
high byte = 0

Tow byte = length

address of string -> X

; high byte of X

; Tow byte

high byte of Y

; Tow byte

starting address of CHAR

; store pointer
; length of string -> B

; address of source char is (X+4)
; address of destination is in CPTR

LDAA
PSHX
LDX
STAA
PULX
INX
INC
BVC
INC
DECB
BNE

CLRA
LDX
FCB
JSR
RTS

FCB

FCB
FCB
FCB
FCB
FCB

FCB
FCB
FILL

4,X

CPTR
0,X

CPTR+1
NOVER
CPTR

NEXT

#PACKET
$00
SERSND

$FF, $FF

$00
$30
$20
$EE
$03

$FF, $FF
$FF, $FF

get next character A=*(X+4)
save source address
destination address X=CPTR
store character code *CPTR=A

increment source address
increment low byte of target
V=0: no overflow

else: increment high byte
decrement character count
next character

A=0: send a packet
address of PACKET

DEBUG: force HX-20 Trap!
send packet

; pointer to current CHAR

0: send

destination ID
source ID

my own function code
data length - 1

; the actual payload

$FF,BUFLEN

X

;Y

; buffer[BUFLEN]

33

| END

The corresponding BASIC loader and test program as created by the python script LST2BAS. py is:

10 REM --- Epson HX-20 -—-

20 REM --- Hex Code Loader ---

30 REM --- M. Hepperle 2018 ---

50 N%=0

60 READ C$

70 IF C$="DONE" THEN 150

80 N%=N%+1 : IF N%=8 THEN PRINT "."; : N%=0

90 C%=0 : I%=1

100 IF LEN(C$)=4 THEN GOSUB 210 : A% = C% : GOTO 60

110 GOSUB 240 : POKE A%,C% : A%=A%+1 : GOTO 60

150 PRINT "Done."

160 DEFUSR1=&HO0A40

170 PRINT USR1(CHR$(0)+CHR$(32)+CHR$(0)+CHR$(64)+"Hello World™)

180 STOP

190 REM C$(HEX) -> C%(DEC), set C%=0 and I%=1 before GOSUB

200 REM Entry HEX4

210 X$=MID$(C$,I%,1) : GOSUB 270 : C%=C%+4096*X% : I%=I%+1

220 X$=MID$(C$,I%,1) : GOSUB 270 : C%=C%+256*X% : I%=I%+1

230 REM Entry HEX2

240 X$=MID$(C$,I%,1) : GOSUB 270 : C%=C%+16*X% : I%=I%+1

250 X$=MID$(C$,I%,1) : GOSUB 270 : C%=C%+X%

260 RETURN

270 X%=ASC(X$) : IF X%>64 THEN X%=X%-55 ELSE X%=X%-48

280 RETURN

290 DATA 0A40,81,03,26,53,E6,00,5A,F7,0A,9E,CO0,03, 2F,49,(C1,20,2F,02
291 DATA Ce,20,96,02,97,85,4F,97,D7,D7,D8,EE,01,A6,00,B7,0A,9F,A6,01
292 DATA B7,0A,A0,A6,02,B7,0A,A1,A6,03,B7,0A,A2,37,CC,0A,A3,FD,0A,98
293 DATA 33,A6,04,3C,FE,0A,98,A7,00,38,08,7C,0A,99,28,03,7C,0A,98,5A
294 DATA 26,EB,4F,CE,0A,9A,BD,FF,70,39,FF,FF,00,30,20,EE,03,FF,FF,FF
295 DATA FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF
296 DATA FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,FF,DONE

40 MEMSET &HAC3

17.4. Disk Drive Emulation

The second function of the MH-20 program is the emulation of disk drive units. This gives you four
simulated floppy disk drives.

Note that a tooltip with a short directory listing is shown when you hover the mouse pointer over one
of the drive images.

17.4.1. Technical Background

The Epson TF-20 dual 5-'4" disk drive unit is actually a small computer which runs a variant of the
CP/M operating system. It communicates with the HX-20 over a “high-speed” serial connection at
38400 baud using the EPSP Protocol developed by Epson. This protocol underwent some extensions
for later Epson computers and is only sparingly documented.

When the HX-20 boots up, it first asks the TF-20 for a short boot loader program. After this has been
received, it asks for a longer machine language program containing the code to extend the BASIC of

the HX-20. This program implements the additional or modified keywords and commands to support
the disk drive.

The extension code is loaded into the memory of the HX-20. Its actual location depends on the size of
the RAM installed in the HX-20. Therefore the HX-20 also asks the TF-20 to relocate the code

according to its memory configuration. Thus the TF-20 has to recalculate the affected addresses in the
34

code before sending it to the HX-20. The MH-20 emulator supports all logical disk functions as
required for operation of the HX-20.

17.4.2. The Emulation

The MH-20 emulator emulates two floppy units, i.e. a total of four disk drives. These are mapped to
four directories:

DISK A

DISK B

DISK C

DISK D

Each directory contains individual files.

While the original floppy disks have a limited capacity, the capacity of the mapped drives is only
limited by the mass storage capacity of the host computer. Of course it makes sense to limit the
number of files in each directory to a reasonable number.

For this purpose each file is directly represented by a disk file on the host computer - no disk image
files are used. Therefore physical disk functions, like formatting and sector reading/writing, do not
make much sense and produce no result.

The main applications of the disk emulation are

e saving and loading programs,
e creating, writing and reading of data files.

17.4.3. Applicable BASIC Keywords and Commands

Keyword Purpose

CLOSE close file(s)

CVI, CVD, QVS convert a string to numeric data

DSKF return free space on disk (has no effect, always returns 320 KB)
DSKI$ direct input of one record (has no effect, returns "Read Error")
DSKO$ direct output of one record (has no effect, returns "Disk write protected™)
EOF return end of file code

FIELD define fields for the record buffer used by random access file
FILES display disk directory

FILNUM define number of FCBs in advance

FRMAT format a disk (has no effect)

GET read one record from random access file

INPUTH# read data item from sequential access file

INPUTS read a string from a sequential access file

KILL delete a file

LINE INPUT# read line of characters from sequential access file

LIST output a program listing to a file

35

LOAD load a program from a file

LOADM load a machine language program from a file
LoC return the current record number of a file

LOF return the largest record number of a file
LSET store data in file buffer for random access file
MERGE merge a program into current program

MKI$, MKD$, MKS$

convert numeric data to a string

NAME rename a file
OPEN open a file
PRINT# print data to a sequential access file

PRINT# USING

print formatted data to a sequential access file

PUT write one random record from file
RESET enable replacement of disk
RSET store data in file buffer for random access file
RUN load and execute a program from disk
SAVE save a program to a file in binary or ASCII format
SAVEM save memory range to a file
SYSGEN create a new system disk (has no effect)
WHILE...WEND conditional loop statement
Note that
e record numbers are 0-based
e cach record is 128 bytes long
e the FIELD statement defines the structure of a complete record
e the PUT and GET statements write resp. read a complete record

17.5. Credits
Copyright notice for the serial library used in MH-20:

/%

R I T R S Y
~

jSSC (Java Simple Serial Connector) - serial port communication library.
© Alexey Sokolov (scream3r), 2010-2014.

This file is part of jSSC.

jSSC is free software: you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

jSSC is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with jSSC. If not, see <http://www.gnu.org/licenses/>.

If you use jSSC in public project you can inform me about this by e-mail,
of course if you want it.

e-mail: scream3r.org@gmail.com

web-site: http://scream3r.org | http://code.google.com/p/java-simple-serial-connector/

36

18. News and Commercial Announcements

Note: The following figures contain company and product names which are reproduced here only for
historic documentation and archival purposes. Note that these companies may not exist anymore and

the products mentioned are surely not available anymore.

re MEHy s
CTRLT {nitialize
1 HENTTOR

2 Basic

MICRO CASSETTE DRVE
@ REC

37

Which do
more sophis

Epson.

Eou think is the
icated computer?

The big differences between the Epson HX-20 Notebook
Computer (on the left) and the Apple Computer (on the
right) are: 1) the HX-20 doesn't need a power cord, 2) the
HX-20 weighs only about four pounds, and 3) the HX-20
costs a lot less money.

can get them at all.

All of which makes the take-it-anywhere HX-20 perfect
for business executives, sales eople, students, kids —
anyone who's looking for an affordable, practical way into
computing.

Portable. Powerful. Affordable. Sophisticated. The extra-
ordinary HX-20 Notebook
Computer. Find out just how
extraordinary. Call (800)
421-5426, in California (213)
539-9140 for your nearest
Epson computer dealer.

EPSON

EPSON AMERICA, INC.

The Epson HX-20 Notebook Computer has a full-size
keyboard, a built-in LCD screen, a built-in printer, 48K of
combined RAM and ROM memory, and an internal power
supply that will keep it running for over 50 hours. So you can
do computing and word processing virtually anyplace you
happen to be. Whereas, with the Apple Computer, you can
only go as far as an extension cord will take you.

And on the HX-20, you get communications interfaces,
upper and lower case letters, five program areas, a full 68
keys including an integrated numeric key pad, an internal
clock/calendar, and the screen and printer, Standard. On
the Apple, you pay something extra for each feature — if you

Circle 177 on inguiry card, BYTE March 1983 99

ROSE BOWL SCOREBOARD SNAFU DONE WITH PORTABLE COMPUTER
During January’s Rose Bowl, a scoreboard prank by two CalTech students was made possible by two
computers and radio modems. The students, who are now being prosecuted for trespassing, used an
Epson HX-20 notebook-size portable computer with an RF modem to tap into an 8086 breadboard
they'd attached between the scoreboard and its operators. The students put several messages on the
scoreboard’s scratch-pad area and finally changed the names of the teams to show CalTech trouncing
rival MIT, instead of UCLA beating lllinois. The students later held a seminar called “Packet RF Control
of Remote Digital Displays.”

BYTE April 1984

38

HX 20 schon ‘geknackt’
{Leserbrief von K. H. Kreeb, Worpswede, in c't
5/84)
Die ‘interne Software’ des HX-
20, fiir die sich Herr Kreeb in-
teressiert, ist schon seit ldngerer
Zeit geknackt. Wir sind drei
HX-Freaks und geben seit Som-
mer 1983 eine HX-20-Fach-
zeitschrift ‘EPSILON’ heraus.
Diese erscheint 6 mal pro Jahr
und wird momentan von iiber
400 Personen in ganz Europa
abonniert. Daneben vertreiben
wir eine HX-20-Dokumenta-
tion, die die Betriebsroutinen
und Systempointer des HX er-
lautert und auflistet, ein sehr
leistungsstarkes Textverarbei-
tungsprogramin, e¢in Debug-
ger/Compactorprogramm und
ein EPROM-Pro-
grammiergerdt. Am 3. Mirz
1984 veranstaltete EPSILON
eine HX-Tagung, an der 60
Abonnenten teilnahmen, u.a.
auch aus der Bundesrepublik
und aus Osterreich. Am 27, Ok-
tober 1984 findet die zweite Ta-
gung statt, die unter dem Gene-
ralthema ‘Kommunikation mit
EPSON-Computern’ stehen
wird.
Gerne senden wir Herrn Kreeb
und allen, die sich interessieren,
eine Probenummer zu.
Peter Addor, EPSILON,
Postfach 1835,
CH-8704 Herrliberg-Ziirich

c’t 1984, Heft 6

Figure 22: The quest for finding more technical information about the HX-20 shows up in these letters to the German

computer magazine c’t.

Und wieder einmal
‘HX-20 geknackt’

{Leserbriefe ¢’t 5; 6, 7784}

Mt Interesse habe ich die Brie-
fe zum Thema ‘HX-20" ver-
folgt. Daraus 1&Bt sich schlie-
fBen, daB wahrscheinlich die mi-
serable Dokumentation der
meisten Computerhersteller
schon zum Standard erklirt
wird, Beim HX-20 gibt es je-
doch nicht mehr so wviel zu
knacken, da in dem von EP-
SON vertriebenen ‘Technical
Reference Manual’ das Moni-
torprogramm mit vielen Bei-
spielprogrammen in Assembler
erklédrt ist. Sicher bleiben noch
einige Geheimnisse zu liiften,
jedoch liegt der Verdacht nahe,
daf} auch User-Clubs ohne Er-
wihnung der Quelle aus diesem
Fundus zehren. Allein der Preis
von DM 300,— tribt die Freu-
de an diesem ansonsten vorbild-
lichen Werk.

Knut Brenndorfer, [smaning

c't 1984, Heft 8

------------------1

I NEU - HX-20 FORTH - NEU I

1 Die neue Programmiersprache:
B Durch einfaches Einstecken des FORTH-EPROM's in den 1
] freien Steckeockel im HX-20, haban Sie zusétziich zu BASIC |

die Programmiersprache FORTH zur Verfogung.

Es wird kein Speicherplatz belegt (RAM bleibt frei).

FORTH-EPROM DM 198 —
FORTH Handbuch, ¢a. 100 Seiten. englisch DM 45, ab Nov. B3 deutsch DM 79.-
Freise inclusive Mehrwertsteuer

Wetere Programme Adrefverwaltung - Statstik - Kalkulanicenen Dalenbant
Kreditkalkulatiznen Senantnefe usw Programmidsungen nach Inren
spezigllen Edardarmssen Fordern Sie uasere Programmubersicht an

Sophienstraile 32 - 7000 Stutigart 1 - Tel. 0711/2284 71/72
Programme + Computer fiir zeitgemale Anwendungen
[B B B B B B B B B B B B B B B B N j

L----

c’t 1984, Hefr 2

39

g - -7/1

HX-20-
Video-Adapter *
jetzt
Verbindung zum Monitor!
Kompletter HX-20-
Zeichensatz (incl.
Grafikz. + zusatzl
Zeichen), samlliche
Steuerbefehle, um-
schaltbar per Pro-

gramm und Tastatur.
Nahezu alle Pro-

I

I die komfortable

Bx12 Punkt-Matrix,
gramme am Moni-

gestochen schare

Anzeige mit Unter-

langen. Visueller

Bildschirm: 80 Zei-

chen x 24 Zeilen

Virtueller Bild-

schirm: 255 Zei-

chen x 48 Zeilen

(alle Editierfunk- tor chne Anderung

tionen) lauftahig

HX-20-Floppy-Set (bis 1,2 MB)
1-2 Laufwerke, je 320-640 K, voller
HX-20-Befehlssatz, Video-Adapter
und Floppy in gleichem oder se-
paratem Gehéuse. CP/M*-Be-
triebssystem, zuséatzlich
CP/M*-Programme
einsetzbar.

CP/M ist ein Warenzeichen der
Digital Research. Inc

SophienstraBe 32 - T000 Stuttgart 1 - Telefon: 0711/228471/72 I
Programme +C ter fiir zeitgeméBe A di
M S BN . S S . .

't 1984, Heft 3

Deutschlands groBter HX-20-Anbieter!!!

HX-Super-Video-Adapter V-2 {auch M-10 + TANDY)
Tx10-Punkt-Matrix, gestochen scharfe Anzeige mit Unterlingen.

Darstellung: 80 Zeichen x 24 Zeilen und 2 Statuszeilen (25. Zeile, alternativ) ein-
und ausblendbar, sémtliche Steuerbefehle — umschaltbar per Programm oder
Tastatur (ESCAPE-SEQUENCEN). Kompletier HX-20-Zeichensatz (inkl. aller
HK-20-Grafikzeichen). Zusatzumschaltung auf 40 x 24, 40 x 12 und 20 x 8 — mit
entsprechend vergroBerter Darstellung auf dem Monitor. Anzeige:

@ stehend, blinkend und invers (auch gemischt moglich).

Kleines formschénes Gehause (145/200/80 ca.). Sofort lieferbar. DM 998.~ inkl.
HX-20-Super-Video-Adapter V-3

weitgehend wie V-2, jedoch hochaufldsende Grafik mit 512 % 512 Punkten —
einzeln setzbar/ldschbar. Ab 4/84

HX-20-3,5"-
VIDEO-DISC
DM 3398.— inki.

einschlieBlich eingebautem Video-Adapter

-

ichen Siel

HX-20-Mikro-Floppy-Set 3,6 (wahlwsise auch §%”) bis 1,5 MB (Mega-Byie)
1-3 Laufwerke, je 380-760 KB, voller HX-20-Befehlssatz, mit integriertem
Video-Adapter (V-1)*, CP/M®-Betriebssystem durch Z80-CPU in der Floppy,
64 K~ Hauptspeicher — HX-20 als Keyboard — Durch CP/M haben Sie Zugriff auf
eine der groften Software-Bibliotheken...

Software-Auszug: Kalkulation, Statistik, Flugnavigation, Baukalkulation, Auf-
mafiberechnung, Assembler/Disassembler, Kreditberechnung, Rechnungspro-
gramm, Uberiragungsprogramme (DFU + Host-Rechner), DIN-4701-Program-
me, Rohrnetzberechnungen, Navigation, Astrologie, Einzelhandsl, HX-20 als
Lad se mit K: minal, T abrechnun teme usw.

® Gesamtprogramm gegen 1.30 DM in Briefmarken!
Programme + Computer fir zeitgemaBe Anwendung.

Achtung: HX-20 Video-Adapter-/Floppy-Set haben Original-EPSON-HIGH-SPEED-SERIAL-AnschiuB.
V24/R8232C Schnittstelle bleibt frei fur Drucker/Modem usw. Bitte vergh

Sophienstr. 32
_ 7000 Stuttgart 1
® Tel, (0711) *220071
Telex: 722706 tss d
=]

c’t 1984, Heft 9

Figure 23: The company time-soft had many special offers for HX-20 owners.

EPSON Manager-Computer

ARRO

Mit dem im Koffer
steckt Sie keiner in die Tasche.

Weil Sie damit einen Assistenten an der Hand haben,
der filr Sie merkt, rechnet, kalkuliert,
plant und schreibt,
Auf einer Flache nicht gréBer als DIN A4
Mit einem einzigartigen Multi-Programm,
zu einem giinstigen Preis.
Kommen Sie vorbei, testen Sie [hren neuen Mitarbeiter.

mirwald ,
electronic

8h, 8025 Minchen,
Telefon (089) 61112 24, FS 5213 476
Biiro Frankfurt: Adalbertstr. 15
Telefon (06 11) 70 35 38

-
N
)
Q
0
(=1
L]
-
18]
o]
Q
N
Q
opd
<)
Q
-
(o)
(=]
=i
(o]
=
=
(&}
()]
B

't 1984, Heft 9

Figure 24: Besides a display controller, the company of Mirwald also sold memory expansion boards for the HX-20.

-

-

Neu!

HX20 -
Micro
Terminal

DM 1298,—
inkl, MwSt.

Dieses neue MICRO - TERMINAL fir den EPSON HX20 Hand - Held - Computer
gestattet die Darstellung von bis zu 80 Zeichen auf 25 Zeilen.

Das 2000 Zeichen - Display mit griinem Schirmbild und Antireflexscheibe
gewdhrleistet groBtmdgliche Benutzerfreundlichkeit.

Sowohl Text, wie auch Graphik werden mit hoher Scharfe dargestellt.

Eine hervorragende ergonomische Komstruktion gibt die Muglichkeit durch
Drehen oder Kippen, das Sichtgerdt auf optimalen Betrachtungswinkel ein-
zustellen.

@ mirwald

40

e|ectronic

FasanenstraBe 8b, 8025 Unterhaching/Miinchen,
Telefon (0 89) 6 11 12 24, FS 5213 476
Biiro Frankfurt: Adalbertstr. 15
Telefon (06 11) 70 35 38

BMC

Daten erfassen

Die intelligenten Unterstatio-
nen der Serie IMP232 erlauben
die Erfassung von analogen
und digitalen Daten ‘vor Ort’.

stelle in einen Rechner gelesen
werden. Uber eine ‘Kopfsta-
tion’ konnen bis zu 32 Unter-
stationen dezentral an einer op-
toentkoppelten Leitung ange-
schlossen werden.

Diese Daten kénnen dann di-

' b Imko GmbH, TulpenstraBe 11, 7505
rekt iber jede RS232-Schnitt-

Ettlingen 5, 07243/99804.

Handbuch sowie eine meniige-
steuerte Software, die das Pro-
grammieren der ICs im Stan-
dard- oder Intelligent-Modus
erlaubt. Das Programmiergerit
HXP2000 kostet als Bausatz
440 DM, als Fertiggerit 560 DM.

SES-Electronic, Im Grund 17, 6920
Sinsheim, 0726173264

HX-20 programmiert
EPROMs

Das netzunabhidngige Pro-
grammiergerdt HXP2000 kann
in Verbindung mit dem Epson-
Computer HX20 alle gangigen
EPROM-Typen programmie-
ren. Zum Lieferumfang des
Geriites gehoren ein (deutsches)

¢'t 1985, Hef1 8

c't 1985, Heft 9

Figure 25: More accessories like EPROM programmer and data acquisition systems were available from 3" parties.

RAM-Disk fiir HX-20

Eine Speicherkapazitit von
2 x 128 KByte (netto) bietet die
RAM-Disk RDSKI1 fiir den
Epson-Rechner HX-20. Die |
Disk ist in einem separaten Ge- |
héduse untergebracht und schal- |
tet sich bei Datentransfer auto- |
matisch ein, wodurch die Batte-
|
|
1
|

CMOS RAM-DISK ::: HX-20

RDSK1, 2x 128 KByte netto DM 1596,— — BuchgréBe 40x 120 x 185 mm
RDSK2, 2x 256 KByte netto DM 2536,— — Gewicht nur 550 Gramm
— 2x120 bzw. 2 x 240 Directory-Eintriige

rie-Kapazitit mindestens fiir 12
Stunden Betrieb ausreicht. Die

— Bis zu 200mal schneller als Kassette
— Disk-BASIC voll TF-20-kempatibel
— 12 Monate Werks-Garantie

len Diskettenlaufwerk und ko-
stet etwa 1600 DM.

KK-Systems GmbH, EichenstraBe 5,
2808 Syke 2, 04242/79 31.

Disk erlaubt den Zugriff auf bis zu 3 M ohne Laden
Daten mit 12facher Geschwin- — Ladeautomatik fiir NiCd-Akkus eingebaut
digkeit gegeniiber dem norma- -SYSTEMS GmbH — Power-Di tik fiir D z

EichenstraBe 5, 2808 Syke 2, Tel. 04242/79 31

c't 1985, Heft 12 €'t 1986, Heft §

Figure 26: Here we can buy a RAM disk the HX-20 from the north of Germany.

41

Terminal Disc TD-10

Die Terminal Disc TD-10 ist ein schnelles

und kompaktes Speichermedium
fiar Inren Epson-Computer HX-20.

TD-10 arbeitet mit 3,5” Disketten.
Der verfigbare Speicherplatz auf dieser
Diskette betragt 780 KByte.

TD-10 ist software-kompatibel zur Epson TF-20.
EBG Darmstadt

= } Elektranik-Bauelemente + Computer-Systeme
= ji1= Lothar Schanuel GmoH

Heidelberger Str. 73, 6100 Darmstadt

WW & | Tel, 0 61.51) 31 38 90/31 26 93
: [| Telex 4197 160 shan @

c't 1986, Heft 6

Figure 27: Obviously, there were other disk drives available besides the Epson TF-20

19. References and Further Reading

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

Epson HX-20 - Technical Manual — Hardware.

Epson HX-20 - Technical Manual — Software.

Eratosthenes Sieve Benchmark Program, BYTE 1/1983.

E. Balkan, “Using and programming the Epson HX-20”, Van Nostrand Reinhold, 1985.
http://electrickery.xs4all.nl/comp/hx20/

Brenndorfer, Knut, “Mehr Speicher fiir den HX-20”, Magazin “mc” 4/1984, pp. 119-121.
Jebautzke, Michael, “Drucker am High-Speed Interface”, Magazin “mc” 7/1985, pp. 82-83.
Bahmann, Wolfram, “Disassembler fiir HX-20”, Magazin “mc” 7/1983, pp. 66-67.

Rohlfs, Kristen, “HX-20 plottet Funktionen”, Magazin “mc” 1/1984, pp. 86-87.

[10] Griindler, Rolf, “Datenbank-Dialog mit dem HX-20", Magazin “mc” 12/1983, pp. 56-58.
[11] Schnieder, Hermann, “HX-20 als Terminal”, Magazin “mc” 2/1984, pp. 58-60.
[12] Wald, Elizabeth, “Slipping Sideways”, PCN February 1984.

42

