
1

HP 9826, 9836 – Notes and Repairs

Martin Hepperle, June 2022, May 2025

Recently, I acquired an HP 9836A with its monochrome monitor. Nothing special for many, but I

wanted it for extending my HP 9000/200/300 range towards the HP Series-80 systems.

The machine had been offered on E-Bay for a relatively high (according to my taste) starting price of

290 EUROs. The photographs showed a CRT with very strong burn-in traces. One could read the old

text when the machine was off. Also the left CAPS LOCK key was missing, which was another

negative point. At least the seller was honest and did not hide these flaws.

These were probably the reasons that nobody else wanted this machine. I took the risk because I

already had a monochrome monitor in storage for more than 5 years but no 9836. And I hoped to

replace the missing key cap with a replica or find a “new” one.

Finally, the machine arrived in two parcels, all wrapped in a few kilometers of sticky tape and air

bubble wrap and well cushioned with thick cardboards so that nothing was damaged in transit.

The system proved to be an early machine (Serial # 2143 A 00213: the 213th machine manufactured in

week 43 of 1981 in the USA) with only 64 KB of RAM on the CPL board. It came with a BASIC 2.0

ROM board. Additionally, a Datacomm and two 256 KB RAM boards (one HP, one Eventide) were

installed – all very authentic for its time.

After a visual inspection of all boards, setting the input voltage switch from 220 to 240 Volts and

cleaning and mildly lubricating the two mini-disk drives (one original Tandon, one HP manufactured

drive HP 9130) I powered the machine up and it booted happily into BASIC.

Figure 1: The CPL board 09826-66515 with the large MC68000 CPU and 2.0 boot ROMs.

2

Figure 2: The diskette controller board 09826-66562.

Figure 3: The BASIC 2.0 ROM board 98261-66513 has 8 ROMs soldered in and 8 empty
sockets.

3

Figure 4: The HP RAM board adds 256 Kbytes to the system.

Figure 5: The Eventide RAM board with 256 Kbytes of RAM.

4

Figure 6: The Datacomm board HP 98628A. Note the single 6116 RAM chip.

The Knob

The first fault, which I noted, was that the knob was not working. So I removed the keyboard and

replaced the burnt out light bulb in in the knob assembly. I had done that before in the Nimitz

keyboard of my 9816. All that is needed is a small 6…12V glass light bulb with filament wires and a

diameter of about 3 mm. Such bulbs are available for model hobby purposes, e.g. for model railroads.

Figure 7: Like on the Nimitz keyboard, the rotary knob is attached to the keyboard
PCB by a small edge connector. The black cover can be pulled off after
slightly bending the tabs (don’t break them, they may be brittle!). The glass
bulb is soldered to the circular PCB and a slight press fit into the cavity
with a V-shaped sheet metal beam diverter.

5

The Keyboard

As I had already seen on the photos, the CAPS LOCK key was missing. Indeed, it was not just

missing, but the black stem was completely broken off, leaving only the cylindrical shaft of the bare

key plunger. To cover the ugly hole, I decided to recreate the key cap.

For mounting the key cap, I drilled two 1 mm diameter holes into the remains of the plunger and

carefully glued two short steel wire pins into the plunger. Here, I used steel-filled Epoxy resin glue.

This was a slightly tricky operation as I had to avoid damaging the key switch as well as bringing glue

into the key mechanism. In preparation of the next steps I also added a very thin layer of Vaseline to

the outer sliding part of the plunger.

Figure 8: Keyboard with missing key and steel pins already glued into the plunger.

The key cap could have been created by a CAD redesign, a 3D printer, applying putty and sanding, but

I made a silicon rubber mold of the corresponding key cap pulled from a Nimitz keyboard. For this

step, the template key cap was suspended upside down on a thin steel strip and the 2-component

silicone slowly poured into a plastic cup. A larger casting hole and smaller venting holes at the four

corners were added for allowing trapped air to escape (it would have been better to add these to the

cap before casting the silicone, but I did not want to glue something to the original cap.)

Figure 9: The silicon rubber mold for the key cap was cast in one piece and later cut
open with a sharp knife.

6

Figure 10: The key cap as cast in clear epoxy resin with the casting spruce removed
and slightly wet sanded.

Next I cast the new cap using clear Epoxy resin. After filling some small bubbles and sanding the

surface, several layers of a matching Humbrol plastic model aircraft paint were applied, wet sanding

the surface between these coats.

For the key label, I bought a few sheets of laser printable water slide paper and printed the label in

slightly varying sizes with my laser printer. I used a very thin slide paper and carefully applied the

decal. After letting the decal dry for 24 hours, I spray-painted the surface with several layers of clear

lacquer to avoid rubbing the label off. Unfortunately, I was impatient and did not wait long enough

between the layers, so that the lower clear layer started to crinkle and I had to wet sand the cap before

adding another coat. However, in the end, after several days of surface finishing, the result was very

nice – a satin gloss finish, similar to the original key caps and just the right color.

Figure 11: To minimize waste, I fixed a small piece of decal paper to a sheet of support
paper with two squares of thin double sided tape.

Figure 12: Key caps: left original, right: reproduction, painted and with decal applied,
but not yet coated with clear protective layer.

7

Figure 13: Two wooden square bars were adjusted with cardboard strips to support
the key cap at the proper height exactly parallel to the base plate.

For mounting the key cap, I supported it by two wooden pegs of the right height, so that it would rest

parallel to the black steel board. Additionally, thin vertical cardboard strips were inserted into the gaps

above and below the cap to align it with its neighbors. I applied only a very small amount of Epoxy

resin to the steel pins and to the holes in the cap and after placing the key cap I inverted the whole

arrangement upside down to avoid any excess Epoxy flowing down towards the key switch.

Figure 14: The key cap rests on the supporting bars while the epoxy cures.

8

Figure 15: The final key cap fits nicely into the keyboard, is difficult to detect and
works fine.

Figure 16: The keyboard mounted in the HP 9836 in its natural habitat.

9

The PSU

While I was toying around to determine the memory configuration and the mass storage MSUS

syntax, the machine suddenly died. You know that sinking feeling when this happens. What have I

done? Should I have kept the machine as a pure exhibition piece? No – I want to be able to use and

explore my systems.

The 16A low voltage fuse had blown. After replacing the fuse it instantly blew again.

So I pulled out Tony Duell’s wonderful schematics (with all its glorious 186 pages!) and the Service

Manual. Following the Manual, the solution was simple: “replace the regulator board” – not really an

option for me.

Compared to other HP designs, the power supply is relatively simple. It produces only +5, +12 and -12

Volts. A massive boat anchor of a transformer powers a rectifier board which feeds about 30 Volts

into a large buffer capacitor. From there, a regulator board contains three regulators for the voltages

and a crowbar over-voltage protection circuit.

I feared that a silicon component in one of the three voltage regulator circuits had burnt and hoped that

no over-voltage had propagated to the core of the machine (assuming that crowbar and fuse had done

their work).

Studying the schematics and the service manual helped identifying the correct edge connector pins on

the regulator board. I found that the input rails of the regulator board were completely shorted. A

visual inspection showed no signs of heat or leaking capacitors.

First, I suspected a permanent short in the thyristor in the crowbar circuit. Desoldering and testing

proved that it was good. Next in the input were capacitors C20 (680 μF electrolytic) and C27 (100 nF

ceramic) both between input voltage and ground. I remembered that I had noticed a very faint fishy

smell when I sniffed across the board the first time, but now I was not sure. Anyway, after desoldering

capacitor C20 the short was gone. And the underside of the capacitor did not look nice – obviously it

had leaked a long time ago and the electrolyte had accumulated and dried up on its underside. I also

replaced the second capacitor C10 of the same size and make. The remaining capacitors looked fine

and tested good, so I did not replace them.

10

Figure 17: PSU regulator board with defective capacitor removed and modern
replacement. The other blue capacitor was also replaced.

Luckily, there was no visible corrosion on the PCB. I replaced the capacitor with a new one which I

had in my drawers. The modern type was much smaller and had a smaller pin distance so the wires

had to be bent slightly to fit the hole pattern on the PCB. Also mine had only two legs (I don’t even

know, whether three pronged devices are manufactured anymore).

Anyway, after cleaning the board with isopropanol, to make sure no corrosive substances were left, I

soldered the new capacitor in and the short was, of course, gone. Testing the regulator board showed

the proper output voltages and after reinserting it into the mainframe the system booted up again. Joy!

The second Sprague electrolytic capacitor of the same type was replaced later, even if it still tested

good.

So, in this case, as has already been demonstrated by many other repairs, the old electrolytic capacitors

were the problem again.

11

Figure 18: Tony Duell’s schematics of the PSU with transformer, rectifier board and
fuses. The right hand side shows the input section of the regulator board
with its crowbar circuit. The culprit was C20 in the lower right of this
figure. Note that C10 in the upper right is of the same type and was replaced
too.

12

And here comes the HP 9836CU

Martin Hepperle, August 2022

A few months after I obtained my 9836A, I stumbled across a HP 9836C on E-Bay which I found very

interesting, but it went for a ridiculous price of more than 400€.

Just four weeks later, another HP 9836, in this case even a “CU” model complete with its color

monitor was offered by a commercial scrapper. It did not look too promising because the HP-IB cables

and even the short monitor cable had been cut for the copper. The stacked HP-IB-connectors and the

display connectors were still attached to the system. Obviously only a few people wanted to have this

machine and I obtained it for 185€ including shipping (which caused the seller some headache, as the

whole system weighs over 40 kg).

Figure 19: The 09826-66517 CPU board of the 9836CU with the MC68000R12 CPU, 3.0
boot ROMs, a few PALs and 18 4Kx4 SRAM chips. The uneven looks of the
gold fingers are due to poor lighting, they are in good condition.

The system included an Eventide WKBP-16 RAM board with 1 MB, a 98628A Opt.100 Datacomm a

98622 GPIO board, a 98620B DMA board and, as a bonus, the math coprocessor 98635A board.

Repairing the Key Switches

I found that 3 key switches were completely broken off and one was just hanging dearly on to the steel

key board plate. At least all parts including the key caps were present. In this case, the cherry switches

were not broken at the stem, but the upper part of the switch case was ripped from the lower part.

Each mechanical switch consists of a plunger with a triangular wedge which operates a spring contact.

The plunger is pushed up by a rather small helical spring of about 2 mm diameter. I glued the upper

cases of the broken switches with a thin thread of steel filled epoxy to the lower cases. One has to be

careful to avoid bringing glue into the switch mechanisms, but with a little bit of care and a toothpick

this can be done. In one switch I had to replace the small spring which was crushed beyond repair.

Luckily, I had a matching one in my “may be useful one day” box.

This time, the rotary encoder was still working and needed no attention.

13

Figure 20: Keyboard with broken switches taken off. Note that one of the function keys
in the upper right is also almost broken and leans forward.

Figure 21: Enlarged view of a broken switch. The upper part of the switch case seems
to be welded ultrasonically to the lower part and this connection breaks.

Figure 22: A thin thread of epoxy can be applied to the outer rim of the switch and the
upper part including the plunger can be inserted carefully. Make sure that
the small helical spring is in place (not yet installed on its pin in this
picture) and that the pin on the plunger engages properly into the spring.

14

Making a new Video Cable

The scrapper had cut away the video cable and only one connector was still screwed to the monitor.

This was unrepairable, so I had to build a new cable. The wiring is straight through, but the RGB

signals should be individually shielded for good signal quality. I cut an old VGA cable and soldered its

ends to male DB-15 connectors. I designed a hood for the rather thick cable and printed four identical

semi-shells on my 3D-printer. I did not bother to add screws for closing the hoods; they are simply

glued together with epoxy which also includes a cable restraint. The monitor side of the cable received

the two original screws with washers to fasten the connector to the monitor. At the computer end I

inserted two countersink head screws from the connector side into the hood and secured them to the

hood with a blob of epoxy. This allows pulling the cable hood together with the DSUB connector from

the female connector.

Figure 23: The new video cable and the sad remains of the original cable..

Figure 24: Simple straight through wiring of the color video cable lifted from the
service manual. Note that pin 11 carries HSYNC which is not labeled in the
HP document. The matching return wire 3 is labeled, though. I connected
the ground pins 3 and 6 to a common ground wire as my VGA cable did not
have more wires. Only pin 5 is not connected. The 12 V signal is used to
switch the monitor on and off.

HSYNC

15

Figure 25: A look under the hood of the new cable before gluing it together. The RGB
wires are shielded and not very convenient to solder to the connector.

Figure 26: The new cable installed. The upper connector is secured to the monitor with
two screws. The lower connector (which should have a sliding lock), is just
held in place by friction.

16

Figure 27: The final result.

And the Rest

After cleaning lots of fluff from the inside of the machine, cleaning and lubricating the floppy disc

drives I tried to boot the machine after removing all boards from the DIO cage. The monitor was not

attached to the system. The self-test stopped immediately after the first LED sweep sequence with a

0100 0100 pattern. This indicated that not even the minimum 16 KB of RAM could be found. I

thought that the CPU board should carry 128 KB or RAM. But thanks to Paul Berger I learned that the

SRAM chips on the CPU board are merely cache and buffer RAMs for CPU and MMU. So I added

the 1 MB Eventide RAM board and indeed the boot sequence passed all tests. Without a monitor and

without diskettes in the drives, the boot sequence stopped with one LED on the floppy controller lit.

After I added a BASIC 2.0 ROM board the system seemed to boot and no LED stayed illuminated.

In the meantime I had the new video cable ready and added the monitor to the system. I was very

much delighted to see the green text of the boot screen and finally the BASIC 2.0 prompt.

When I tried the color graphics commands I learned that the extensions GRAPH 2.1 are necessary to

use color. In case of later BASIC versions, the GRAPHX extension has to be loaded.

The math coprocessor board 98635A is an interesting device and more information can be found in the

Pascal System Designer’s Guide (98615-90074). Its NS 32081 FPU offers the four basic operations on

IEEE floating point numbers. Later BASIC versions recognize it automatically, but it is also possible

to control it directly – see one of the following sections.

17

And finally the HP 9826

Martin Hepperle, April 2025

As the missing link between the HP-85 an the HP-9000 series I always wanted a compact HP 9826.

Around the year 2000 many of them were sold, but later the stream of “new” devices slimmed down

and the desired prices climbed to insane heights. Finally, in 2025 I obtained a HP 9826A for a

reasonable 195€. The drive door latch was somehow damaged, otherwise the machine looked fine. I

did not hesitate long and decided to buy that machine. The 25 kg parcel arrived within 3 days at my

doorstep, just 2 weeks after my birthday, so I considered this a late birthday present. The CPU board

in this system is another variant of the 9826/9836 CPU boards. It carries the boot ROMs at the right

edge and has a large, HP-branded 68000 CPU in a ceramic package.

Figure 28: The 9826 came with this 09836-66510 CPU board carrying the 1826-2505
CPU, boot ROMs 3.0 and 16 4164 SRAM chips providing 128 Kbytes of RAM.

The system included two 256 Kbyte HP RAM boards, another uncovered slot showed that the seller

hat taken out another interface board for a separate sale. This did not hurt, as I had enough interfaces

for replacement.

Figure 29: The diskette controller in the 9826 is the same 09826-66562 board as used in
the 9836A, with only one ribbon cable connected.

18

Figure 30: The power supply regulator board of the 9826 had no defects.

The HP 9826 system uses the same Tandon TM-100 disk drive as the HP 9836. During the first

inspection, I noticed the missing disk drive door handle – the upper part of it was still attached to the

disk drive frame. Finally, I found the missing part wedged inside the disk drive – the lower part of the

disk drive door was completely broken off. This part is HP-specific and consists of a complex

injection molded part which includes two torsion bar springs and two latching hooks. The door can be

opened and closed easily with the tip of a finger, but obviously someone tried to pull the tab out. I

don’t know how he accomplished the feat, but the latching door was broken completely into two parts.

The breaks were symmetric at the narrow bridge where the rectangular handle attaches to the torsional

springs. My first idea was to reconstruct the part in CAD and 3D-print it, but this would require a very

accurate model and some stiff but still springy material. Therefore, I tried first to fix the part be gluing

it back together. The material seems to be a sturdy ABS type, which is good, as it can be glued with

solvent-based cements.

Simply gluing the parts together would probably not do it, because the connection area was just about

3 by 1.5 millimeters and highly stressed. In order to beef the repair region up, I cut small strips of

white ABS sheet material of 1 mm thickness, about 1-3 mm wide. First I used acetone and a small

brush to soften the break surfaces and their environment. Next, I used “Revell Constructa” cement for

plastic models. This liquid cement comes in a bottle with a thin steel tube for precision applications. It

contains a solvent which is well suited for ABS and polystyrene. As a first step I glued the small

contact areas and let the part dry for 24 hours. I used small parallel screw clamps for keeping the parts

well aligned and under slight pressure in the glued contact area.

19

The next day I added the thin ABS strips; first to one side, then to the opposite side. These strips

extend over and beyond the crack to provide a wider load path. One day later, I added some more thin

strips to make some fillets. It is important to let these solvent based glues dry for long enough time,

because the solvent can only evaporate very slowly due to the dense plastic material. It takes 1-2 days

to be ready to use. And, of course, it is important that there are no gaps between the parts so that the

dissolved plastic surfaces touch each other and can mix. But compared to other glues, like

Cyanoacrylate (Super-Glue) or Epoxy, the solvent-based glues create a chemical bond which is much

stronger than other adhesives, which work mostly due to mechanical friction on more or less rough

surfaces.

The result is visually not very nice because of the white reinforcements, but this region is invisible

when mounted in the disk drive. Reassembling requires some careful adjustment so that the upper

edge moves nicely into the slot in the black bezel and the whole drive must be mounted again in the

HP-9826 case so that the latch moves freely and has equal gap along its side edges to the front panel of

the 9826.

Figure 31: The repaired latch with the initial break lines indicated in red. The white
ABS strips attached to the right and left of the break add additional
strength. The horizontal torsion bars to the right and left are not affected.

Figure 32: During re-assembly the latch must be aligned so that its upper edge slides
without interference into the slot in the top of the black front panel.

20

First Steps with BASIC 2.0 on the HP 9836

This early version of HP BASIC is missing many features of the later BASICs but it still quite useable.

Because it is on my ROM board it boots immediately without any additional disk drives, which is very

nice.

Mass Storage

The 9836 system has two 5-¼" diskette drives and the ROM BASIC 2.0 can also talk to external

AMIGO drives. The right hand drive is ":INTERNAL,4,0" and the left hand drive ":INTERNAL,4,1".

The default drive can be set with a MASS STORAGE IS command, MASS STORAGE IS ":INTERNAL"

defaults to drive 4,0, i.e. the right hand drive. The left hand drive can be select as default by issuing

MASS STORAGE IS ":INTERNAL,4,1".

CAT ":INTERNAL" lists the files on the default MSUS, CAT ":INTERNAL,4,0" the ones on the right

and CAT ":INTERNAL,4,1" the files on the left drive.

Copying a file from the default to the left disk drive COPY "FILE" TO ":INTERNAL,4,1".

Loading a file from the default drive LOAD "FILE" or from the left hand internal drive LOAD

"FILE:INTERNAL,4,1".

HP-IB Devices

The built-in HP-IB interface has the default select code 7. Thus a listing of the current BASIC

program can be sent to an external printer with HP-IB address 1 with LIST #701.

When it comes to disk drives, you can access drives supporting the AMIGO protocol with the

identifier HP8290X (for 9121S, 9121D, 9133 floppy), HP9895 (for 9133 hard disks, 9895M and 9896S)

or, HP82901 (for 82901M and 82901S) or HP82902 (for 82902M). Here, 9133 stands for the early

9133A/B/XV disk drives (not the later 9133D/H/L using the CS80 protocol often used with HP 9000

systems).

The HPDRIVE software disk emulator can, for example, simulate the 9895 AMIGO diskette drive.

LOAD "FILE:HP9895,700,1"

Note: on my older Pentium 200 MHz PC system, HPDRIVE must be run without the –d flag otherwise

it is too slow to complete the INITIALIZE command in time.

For accessing more advanced CS80 disks in addition to the classical AMIGO drives, one has to load

the AP2.1 extensions:

LOAD BIN "AP2_1"

These extensions add the CS80, HP9133, HP9134 and, HP9135 protocol specifiers to the MSUS string.

Here, 9133 stands for the later disk drive model. Series-80 users: note the space between LOAD and

BIN.

An external CS80 disk drive having HPIB Address 3 and unit number 0 can then be accessed as

CAT ":CS80,703,0"

LOAD "FILE:CS80,703,0"

MASS STORAGE IS ":CS80,703,0"

21

BASIC 2.0 Programs

The command EDIT enters edit mode where the cursor and line manipulation keys as well as the knob

can be used. This command is also on one of the function keys in the upper right of the keyboard.

Listing a file on a printer having HP-IB address 1 and connected to the internal HP-IB interface:

LIST #701 or with a range of lines LIST #701,100,200.

The knob can be used to move quickly in the editor, the SHIFT key toggles between x and y direction.

The PHYREC Binary Program

This CSUB contains two keywords to read or write a sector of 256 bytes (128 16-bit integers).
DIM Sector(127)
INTEGER Nsector
Nsector=0
Phyread Nsector, Sector(*)
PRINT Sector(0) DIV 255;Binand(Sector(0),255)

Phywrite Nsector, Sector(*)

Using READIO and WRITEIO

Arbitrary memory locations can be accessed byte-wise by using the special identifier 9826
Address = &H20000
Bdata = READIO (9826, Address)
WRITEIO 9826, Address; Bdata

For accessing memory 16-bit word-wise the same special identifier is used, but with a negative sign
Address = &H20000
Wdata = READIO (-9826, Address)
WRITEIO -9826, Address; Wdata

The address of numeric variables can be found by reading with the special identifier 9827
Integer Codedata(32)
Caddress = READIO (9827, Codedata(1))

Unfortunately it is not possible to obtain the address of a string variable with this function. However,

by embedding the string variable into a common block it is possible to access its contents.

Note that the variables in common blocks are stored in reverse order, from low to high addresses.

Therefore, in the following dump example, we have to start at the address of the last item of the COM

block.

The common block
10 COM /Common/ INTEGER I1,I2,L$[8],INTEGER I3,I4,REAL R1,INTEGER Last

is actually stored as
start length item
 0 2 Last - lowest address
 2 8 R1
 10 2 I4
 12 2 I3
 14 2+8 L$[8] - 2 bytes current length, 8 bytes characters
 24 2 I2
 26 2 I1 - highest address

Common block dump example (note that negative addresses are actually unsigned values):
10 COM /Common/ INTEGER I1,I2,L$[8],INTEGER I3,I4,REAL R1,INTEGER Last
20 I1=1
30 I2=2
40 I3=3

22

50 I4=4
60 R1=1.0E-12
70 L$="ABCD"
80 Last=32767
90 !
100 Addr=READIO(9827,I1)
110 PRINT "I1 at ";Addr
120 Addr=READIO(9827,I2)
130 PRINT "I2 at ";Addr
140 Addr=READIO(9827,I3)
150 PRINT "I3 at ";Addr
160 Addr=READIO(9827,I4)
170 PRINT "I4 at ";Addr
180 Addr=READIO(9827,Last)
190 FOR I=1 TO 14
200 B=READIO(-9826,Addr)
210 B1=READIO(9826,Addr)
220 B2=READIO(9826,Addr+1)
230 PRINT USING "DDDDDDDD,X,A,DDDDDD,X,A,X,DDD,X,DDD";Addr,":",B,"=",B1,B2
240 Addr=Addr+2
250 NEXT I
260 END

RUM

I1 at -19394
I2 at -19396
I3 at -19408
I4 at -19410
 -19420 : 32767 = 127 255 - Last: 1 word, 2 bytes
 -19418 : 15729 = 61 113 - R1: 4 words, 8 bytes
 -19416 :-26727 = 151 153
 -19414 :-32467 = 129 45
 -19412 : -5615 = 234 17
 -19410 : 4 = 0 4 - I4 = 4
 -19408 : 3 = 0 3 - I3 = 3
 -19406 : 4 = 0 4 - 4 characters used in L$[8]
 -19404 : 16706 = 65 66 8 bytes with content of L$ ‘A’,’B’
 -19402 : 17220 = 67 68 ‘C’,’D’
 -19400 : 0 = 0 0 empty part of string
 -19398 : 0 = 0 0
 -19396 : 2 = 0 2 - I2 = 2
 -19394 : 1 = 0 1 - I1 = 1

Writing to the identifier 9827 performs a jump to a subroutine (jsr) at the given address.
WRITEIO 9827, Caddress; D0data

Here, Caddress could be the address of an array with words of machine code, ending in a “return from

subroutine” (rts) instruction. The additional parameter D0data is placed in the processor register D0

so that e.g. the address of a buffer can be transferred.

The following example shows a minimal machine language routine which increments the 16-bit word

(a BASIC INTEGER) at the memory address given in D0data.

Integer CodeBuffer(10)
Integer Databuffer(1)
!
! 48E7 FFFF MOVEM.L D0-D7/A0-A6,-(SP) ; save registers (optional >---+)
! 2040 MOVE.L D0,A0 ; copy D0to address register |
! 5250 ADDQ.W #1,(A0) ; increment 16-bit value by 1 |
! 4CDF FFFF MOVEM.L (SP)+,D0-D7/A0-A6 ; restore registers (optional <---+)
! 4E75 RTS ; return
!
DATA 48E7,FFFF,2040,5250,4CDF,FFFF,4E75,STOP
!
RESTORE
I=0
Nextword: READ Word$
 IF Word$=”STOP” THEN GOTO Done
 Codebuffer(I) = IVAL(Word$,16)

23

 I=I+1
GOTO Nextword

Done: MaxWords=I-1
!
Caddress = READIO (9827, Codebuffer(0))
Daddress = READIO (9827, Databuffer(0))
!
Databuffer(0) = 0
PRINT Databuffer(0)
FOR I=1 TO 10
 WRITEIO 9827, Caddress; Daddress
 PRINT Databuffer(0)
NEXT I
END

The Alpha screen buffer of the 9836 starts at 0x512000 and is 4 Kbytes long. It is organized in 16-bit

words per character. The odd numbered addresses contain the actual character code and the even

addresses the character attributes (bit 3=half bright).

The graphics screen RAM of the monochrome 9826 and 9836 models starts at 0x530000 that of the

9836C at 0x520000 (see Table 1 below).

The early BASIC versions do not have functions for accessing graphics RAM e.g. for bitmap

operations. Only GSTORE and GLOAD for storing resp. loading the entire screen are available.

Using READIO and WRITEIO, it is possible to access any byte in the graphics RAM.

The code fragment below writes some patterns directly to the graphics RAM.
! HP 9836, monochrome
! 512 pixels = 64 bytes per row
! 390 rows per screen
INTEGER X, B
! first, left byte of upper row at 0x530000
Address = 5439488
! draw a dotted horizontal line, 170d = 10101010b
B = 170
FOR X=0 TO 63
 WRITEIO 9826, Address+X; B
NEXT X
! skip to start of bottom row
Address = Address + (390-1)*64
! draw a dotted horizontal line, but now with words
B = 170*256 + 170
FOR X=0 TO 31
 WRITEIO -9826, Address+X; B
NEXT X
END

If you use GLOAD and GSTORE with a multi-dimensional array to load or store the complete display

RAM, remember that HP BASIC (like FORTRAN) increments the rightmost index first. So the

dimension of an INTEGER array for 64 bytes in 390 lines of the monochrome 9836 display would be
INTEGER Screen(1:390,1:32)

24

Table 1: Characteristics of the graphics RAM of various HP 9000/200 systems [1].
Address layout 7 uses only the odd bytes, layout 9 corresponds to 4 bit
indices into the color map and layout 10 is one byte per pixel (bit 0 used).

The following example code demonstrates two versions of a simple Bplot subroutine for the HP 9836

with monochrome monitor, constructed from the information given above.

The first version was written in pure BASIC, whereas the second version makes use of a short

machine language routine, embedded into a BASIC subroutine. A listing of the second version is

given in Listing 1 below.

Table 2: Run times of both Bplot versions.

Version Time

BASIC 2.0 2.110 s

Machine Language 0.120 s

For simplicity, the X-position will always be byte aligned. No precautions have been taken to avoid

out-of-screen writes. Appropriate tests could be added to the Bplot routines. The size of the string

buffers can be larger than the actual bitmap data because the machine language routine uses the actual

string length to determine the number of rows to map.

10 !
20 ! Requires AP2.1
30 !
40 ! Martin Hepperle, 2022
50 !
60 INTEGER X,Y,Wb
70 DIM Buffer$[80]
75 !
80 ! load machine language routine into COM
90 CALL Bplot_init
95 !
100 ! get logo bitmap
110 Buffer$=FNLogo$
115 !
120 T0=TIMEDATE
130 GCLEAR
140 WINDOW 0,511,0,389
150 MOVE 466,0
160 DRAW 466,389
170 MOVE 510,0

25

180 DRAW 510,389
190 X=474
200 Wb=4
210 FOR Y=8 TO 360 STEP 32
220 CALL Bplot(X,Y,Wb,Buffer$)
230 NEXT Y
240 T1=TIMEDATE
250 PRINT "dT=";T1-T0
260 END
270 ! --------------------------------
280 ! Load the ML program
290 SUB Bplot_init
300 COM /Bplot/ INTEGER Code(0:39),Bitmap$[100],INTEGER Xb,Yb,Wbytes
310 INTEGER I
320 DIM Word$[4]
330 DATA 48E7,FFFF,2040,3218,3418
340 DATA ED42,3618,E64B,3818,88C1
350 DATA 2A3C,0053,0000,DA43,DA42
360 DATA 2245,4283,B644,6700,001C
370 DATA 4285,B245,6700,000A,1398
380 DATA 5000,5245,60F2,D3FC,0000
390 DATA 0040,5243,60E0,4CDF,FFFF
400 DATA 4E75
410 DATA STOP
420 !
430 RESTORE
440 I=0
450 Nextword:READ Word$
460 IF Word$="STOP" THEN SUBEXIT
470 Code(I)=IVAL(Word$,16)
480 I=I+1
490 GOTO Nextword
500 !
510 SUBEND
520 ! --------------------------------
530 ! Bit Plot
540 SUB Bplot(INTEGER X,Y,Bytes_per_row,Buffer$)
550 COM /Bplot/ INTEGER Code(0:39),Bitmap$[100],INTEGER Xb,Yb,Wbytes
560 ! Copy to COM
570 Xb=X
580 Yb=Y
590 Wbytes=Bytes_per_row
600 Bitmap$=Buffer$
610 ! get addresses
620 Dataaddr=READIO(9827,Wbytes)
630 Codeaddr=READIO(9827,Code(0))
640 ! call ML routine
650 WRITEIO 9827,Codeaddr;Dataaddr
660 SUBEND
670 ! --------------------------------
680 DEF FNLogo$
690 INTEGER X,Y,Wbytes
700 DIM Bitmap$[80]
710 ! Definition of bitmap data
720 ! 4 bytes per line, 18 lines
730 DATA 4,18
740 ! top to bottom
750 DATA 63,255,255,252,127,255,255,254
760 DATA 255,240,15,255,255,240,3,255
770 DATA 255,176,1,255,255,62,124,255
780 DATA 255,63,126,255,254,51,102,127
790 DATA 254,51,102,127,254,51,102,127
800 DATA 254,51,102,127,255,51,126,255
810 DATA 255,51,124,255,255,128,97,255
820 DATA 255,192,99,255,255,240,111,255
830 DATA 127,255,255,254,63,255,255,252
840 !
850 ! Read bitmap to transfer buffer
860 READ Wbytes
870 READ Nrows
880 Bitmap$=""
890 FOR I=1 TO Nrows*Wbytes
900 READ C
910 Bitmap$=Bitmap$&CHR$(C)
920 NEXT I

26

930 RETURN Bitmap$
940 FNEND

Listing 1: This program uses a machine language subroutine.

48E7 FFFF movem.l d0-d7/a0-a7,-(sp)

 ; a0: address of WB in COM
2040 move.l d0,a0

 ; d1: WB in COM
3218 move.w (a0)+,d1
 ; d2: Y in COM
3418 move.w (a0)+,d2
 ; d2: Y*64 = row start offset from upper left
ED42 asl.w #6,d2

 ; d3: X in COM
3618 move.w (a0)+,d3
 ; d3: X/8 = start address of first column
E64B lsr #3,d3

 ; d4: actual string length
 ; a0: start of string
3818 move.w (a0)+,d4
 ; d4: d4/d1 = Rows
88C1 divu.w d1,d4

 ; d5: destination address, upper left
2A3C 00530000 move.l #5439488,d5
DA43 add.w d3,d5
DA42 add.w d2,d5
 ; a1: destination start address
2245 move.l d5,a1

 ; d3: row=0
4283 clr.l d3

 ; WHILE Row while d3<d4
 WhileRow:
B644 cmp.w d4,d3
6700 001C beq EndWhileRow

 ; Byte=0
4285 clr.l d5
 ; WHILE Byte while d5<d1
 WhileByte:
B245 cmp.w d5,d1
6700 000A beq EndWhileByte

 ; copy source byte to destination
1398 5000 move.b (a0)+,(a1,d5)

 ; END WHILE Byte
5245 addq.w #1,d5
60F2 bra WhileByte

 EndWhileByte:
D3FC 00000040 add.l #64,a1

 ; END WHILE Row
5243 addq.w #1,d3
60E0 bra WhileRow

 EndWhileRow:
4CDF FFFF movem.l (sp)+,d0-d7/a0-a7
4E75 rts

Listing 2: This Bplot code has been embedded into the BASIC routine Bplot_init above.

27

What about Speed?

Of course, I had to run the infamous BYTE benchmark “Eratosthenes Sieve” on my HP 9836. Three

variants of the same algorithm were implemented and the results are listed below.

The assembler version was my first 68000 program ever and is therefore not perfect, but produces the

correct results. It shows how one can use small assembler routines inside BASIC programs without

resorting to CSUBs or third party assembler tools. I developed the code on my PC using the Easy68K

assembler and simulator for debugging and then typed the machine language words into the BASIC

editor.

Table 3: Eratosthenes Sieve benchmark. Execution times are for 10 iterations,

interpreted BASIC 2.1 180 s

compiled Pascal 3.25 9.9 s

68000 assembler, in BASIC wrapper 2.4 s

For comparison: BYTE Magazine gives a time of 5.9 s for a HP 9830 (HP Pascal 1.0 on its 68000 @ 8

MHz). A HP 85 with its Capricorn @ 640 kHz and interpreted BASIC takes 3084 s – its machine

language version runs in 21 s. An IBM PC with interpreted BASICA needs about 1900 s.

10 INTEGER Flags(8191)
20 INTEGER M,I,K,Prime,Count
30 T0=TIMEDATE
40 FOR M=1 TO 10
50 PRINT M
60 Count=0
70 FOR I=0 TO 8190
80 Flags(I)=1
90 NEXT I
100 FOR I=1 TO 8190
110 IF Flags(I)=0 THEN GOTO 190
120 Prime=I+I+3
130 K=I+Prime
140 WHILE K<=8190
150 Flags(K)=0
160 K=K+Prime
170 END WHILE
180 Count=Count+1
190 NEXT I
200 NEXT M
210 PRINT Primes;" Primes in ";TIMEDATE-T0;" seconds"
220 END

Listing 3: This Sieve program in pure BASIC performs 10 iterations.

0000 *---
0000 * BYTE Eratosthenes Sieve Benchmark
0000 * Martin Hepperle, 6/2022
0000 * 68000 assembler code
0000 * Call with address of a 8191 bytes array in register D0
0000 * On return array[0] will have the count value of 1899
0000 *---
0000 =00001FFE SIZE equ 8190
0000 ;
0000 entry:
0000 ; save all to be sure – probably already done by HP BASIC
0000 48E7 FFFF movem.l d0-d7/a0-a7,-(sp)
0004
0004 ; on entry:
0004 ; D0: address of flags[SIZE] byte array
0004
0004 ; Register Usage:
0004 ; D0: address of flags byte array

28

0004 ; D1: i loop counter
0004 ; D2 count
0004 ; D3 prime
0004 ; D4 k
0004 ; A0 address of flags[i]
0004 ; D5,A1 address of flags[k]
0004 ;
0004 ; initialize flags[0..SIZE] with true
0004 2040 move.l D0,A0
0006 323C 1FFD move.w #SIZE-1,D1
000A 10FC 0001 Fill: move.b #1,(A0)+
000E 51C9 FFFA dbra D1,Fill
0012
0012 ; --- count = 0
0012 4242 clr.w D2
0014
0014 ; D0: start address of flags byte array
0014 2040 move.l D0,A0
0016
0016 ; i=0
0016 4241 clr.w D1
0018 ; main loop over flags[i]
0018 NextNumber:
0018 ; --- if flags[i] == 1
0018 0C18 0001 cmpi.b #1,(A0)+
001C 6600 0024 bne Incr
0020
0020 ; begin
0020 ; --- prime = 3 + i + i
0020 ; D3 = 3 + D1 + D1
0020 363C 0003 move.w #3,D3
0024 D641 add.w D1,D3
0026 D641 add.w D1,D3
0028 ; --- k = prime + i
0028 ; D4 = D3 + D1
0028 3803 move.w D3,D4
002A D841 add.w D1,D4
002C
002C ; if k>SIZE goto Crossed
002C Crossing:
002C 0C44 1FFE cmpi.w #SIZE,D4
0030 6E00 000E bgt Crossed
0034
0034 ; --- flags[k] = 0
0034 ; (D0+D4)
0034 2A00 move.l D0,D5
0036 ; add lower word
0036 DA44 add.w D4,D5
0038 ; to address register
0038 2245 move.l D5,A1
003A 4211 clr.b (A1)
003C
003C ; --- k = k + prime
003C ; D4 = D4 + D3
003C D843 add.w D3,D4
003E 60EC bra Crossing
0040 Crossed:
0040 ; count = count+1
0040 5242 addq.w #1,D2
0042
0042 ; end
0042 Incr:
0042 ; increment loop counter i
0042 5241 addq.w #1,D1
0044 ; if I <= SIZE then goto Next
0044 0C41 1FFE cmpi.w #SIZE,D1
0048 63CE bls NextNumber
004A
004A ; place count into integer at flags(0) so that BASIC can see
004A 2040 move.l D0,A0
004C 3082 move.w D2,(A0)
004E
004E ; restore all – probably also done by HP BASIC
004E 4CDF FFFF movem.l (sp)+,d0-d7/a0-a7
0052 4E75 rts

29

0054 ;
0054 END main

Listing 4: The assembled single iteration Sieve code with the resulting machine code.

10 !
20 ! Requires AP2.1
30 !
40 ! Martin Hepperle, 2022
50 !
60 INTEGER Codebuffer(128)
70 INTEGER Databuffer(8190)
80 REAL Caddress
90 REAL Daddress
100 ! Eratosthenes Sieve Machine Code Words
110 DATA 48E7,FFFF,2040,323C,1FFD,10FC,0001,51C9,FFFA
120 DATA 4242,2040,4241,0C18,0001,6600,0024,363C,0003
130 DATA D641,D641,3803,D841,0C44,1FFE,6E00,000E,2A00
140 DATA DA44,2245,4211,D843,60EC,5242,5241,0C41,1FFE
150 DATA 63CE,2040,3082,4CDF,FFFF,4E75,0000
160 !
170 !
180 RESTORE
190 I=0
200 Nextword: READ Word$
210 IF Word$="0000" THEN GOTO Done
220 Codebuffer(I)=IVAL(Word$,16)
230 I=I+1
235 ! TODO: should test for Codebuffer() overrun
240 GOTO Nextword
250 Done: Maxwords=I-1
260 !
270 Databuffer(0)=0
280 ! Get Addresses
290 Caddress=READIO(9827,Codebuffer(0))
300 Daddress=READIO(9827,Databuffer(0))
310 PRINT "Code:";DVAL$(Caddress,16)
320 PRINT "Data:";DVAL$(Daddress,16)
330 FOR I=0 TO Maxwords
340 PRINT USING 370;I,IVAL$(Codebuffer(I),16)
350 NEXT I
360 PRINT
370 IMAGE #,2D,":",4A,X
375 ! --- start of timing
380 T0=TIMEDATE
390 PRINT Databuffer(0)
400 FOR M=1 TO 10
410 WRITEIO 9827,Caddress;Daddress
420 NEXT M
430 PRINT Databuffer(0);"primes"
440 T1=TIMEDATE
445 ! --- end of timing
450 PRINT T1-T0
460 END

Listing 5: The BASIC program with machine code words performs 10 iterations too.

Using the Datacomm Interface

The Datacomm interface is a very flexible device and most users will use it as a RS232C interface.

If you use it without handshaking, even with a modern, fast computer, you might see transmission

errors. I usually set the inter-character spacing to a value of 1 or 2 to obtain error-free connections.

Simply set the control register 37 to the desired value, the default is zero.
CONTROL 20,37;1

30

Using the HP 98635A FPU Board

The Floating Point board HP 98635A carries a floating point processor produced by National

Semiconductor, the NS-16081. This FPU was later renamed NS-32081 and it had been designed for

application with the NS-32000 CPU, but can also be interfaced to other CPUs like the Motorola

68000. At the time, the Motorola FPU 68881 was not yet available and when it came to the market, it

was about 10 times as expensive as the NS chip (but also more capable). For one or both of these

reasons, HP must have decided to develop this board and add support to Pascal and BASIC in 1983.

The FPU can handle short float (4-byte, 32-bit, single precision) and long float (8-byte, 64-bit, double

precision) numbers in a format which is identical to the emerging IEEE-754 standard. The processor

has eight short float registers f0 to f7 which can be combined into 4 long float registers.

HP Basic uses the same long float format for its REAL numbers, so that no lengthy conversion, except

for word order is required. Therefore, I used the long float format and having only four register pairs

requires some planning to avoid too many data transfers into and out of the FPU.

Unfortunately, the repertoire of the FPU is limited to the four fundamental operations addition,

subtraction, multiplication and division, additionally supporting absolute value and negation. It

implements no trigonometric function like sine or tangent and no logarithmic and exponential

functions nor the square root. For these functions we must still use the common approximations by

series or table interpolation.

The card is attached to the DIO bus as a memory mapped device. ROMs are used to decode a range of

addresses and translate them into instructions for the FPU. A state machine then sends these opcodes

and data to the FPU for execution. The starting address for the card and this opcode map is 0x5C0000

in the internal I/O address range.

While the FPU executes an opcode, the program must wait for completion before starting the next

operation. This wait is usually done by so called “bogus reads”, which simple waste some time and

finally may return a status bit (on Intel FPUs one uses the FWAIT opcode and on Motorola FPUs the

FNOP opcode to wait for completion).

31

Figure 33: The HP 98635A Floating Point Unit board with the NS-16081D-10.

The HP 98635A board is automatically supported by BASIC versions above 3.0. These versions

recognize the board and use it for floating point operations. However, the BASIC system cannot know

your intentions and can only replace individual floating point operations with a code sequence of

 copy operands from RAM into the FPU,

 perform the operation,

 copy the result back to RAM.

The 98635-aware BASIC systems probably also include compact FPU code modules for the

transcendental functions, which should be more efficient than the replacement of single operations.

In case of a simple BASIC chain operation like multiple additions, this approach can insert many

unnecessary copy operations. An optimized version would copy only “new” operands to the CPU and

keep intermediate results in the FPU as long as possible. Such an application would require an

optimizing compiler or manual assembly.

I was interested in learning “how to do it by hand” without using a compiler or inline assembler.

First, the board must be enabled before you can use it. If the board is not active it does not monitor its

I/O RAM area and any access would lead to a fault.

CONTROL 32,2;1 enable the board
CONTROL 32,2;0 disable the board

It is also possible to query the enable state:
STATUS 32,1;A

A return value of A=1 means that the board is active, A=0 indicates that the board is not enabled or not

present.

An alternative direct way to enable and reset the card is to write a 1 to the base address+1:
REM 0x5C0000
Addrcard=6029312
WRITEIO 9826,Addrcard+1;1

After having enabled the board, you can call machine code subroutines either by creating a CSUB with

the Pascal Assembler or more primitive by using the WRITEIO BASIC function.

For testing, I used the latter method and have read the machine code from DATA statements into an

INTEGER array and then calling it with WRITEIO.

A Simple Example

The most simple (and probably most inefficient) example would be a machine language program to

multiply two real numbers.

The subroutine takes the two input values X1 and X2 and returns their product in X3. Again, as

explained above, we perform the data transfer via a COM block. The routine must load the two input

numbers into the FPU, multiply them and copy the result back to the variable X3.

A suitable assembler subroutine with the generated machine code looks like this:

 ; purpose:

32

 ; calculate X3 = X1 * X2
 ; no error checking
 ; Uses COM / FPU / REAL X1, X2, X3

 ; a5: base address of FPU
4BF9 005C0000 lea $5C0000,a5

 ; a0: address of X3 in COM
2040 move.l d0,a0

 ; d0-d1: X2 in COM -> d0,d1
4CE8 0003 0008 movem.l $8(a0),d0-d1
 ; d2-d3: X1 in COM -> d2,d3
4CE8 000C 0010 movem.l $10(a0),d2-d3

 ; this operation moves two 64-bit words in one go
 ; X2 = d0,d1 to f3,f2
 ; X1 = d2,d3 to f1,f0
48ED 000F 44F0 movem.l d0-d3,movf_m_f3(a5)

 ; multiply: X1 * X2 = (f2,f3) = (f0,f1)*(f2,f3)
4A6D 4042 tst.w mull_f0_f2(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; return X3 = X1 * X2
 ; f3,f2 to d0,d1
4CED 0003 4560 movem.l movf_f3_m(a5),d0-d1
 ; d0,d1 to X3 in COM
48E8 0003 0000 movem.l d0-d1,$0(a0)

 ; f3,f2 to X3 in COM
 ; alternative without using CPU registers, but changes a0
; 20ED 4560 move.l movf_f3_m(a5),(a0)+
; 20ED 4564 move.l movf_f2_m(a5),(a0)

4E75 rts

The corresponding BASIC program which calls this subroutine is listed below. It includes a routine to
dump the machine code for crosschecking as well as the content of the output variable X3 before
calling the subroutine. The program performs the multiplication 5000 times, first with the machine
code routine and then a second time with pure BASIC.

10!
20! LOAD BIN "AP2_1"
30!
40 REAL Address, Addrcode, Addrdata
50 DIM Hex$[4]
60 ! COM used for data transfer
70 COM /Buf/ REAL X1,X2,X3
80 ! COM is arranged from X3 at low to X1 at high address
90 INTEGER Code(80)
100 ! For testing: just a RETURN
110 DATA 4E75, STOP
120 ! The real thing: use FPU to multiply two REALs
130 DATA 4BF9,005C,0000,2040,4CE8,0003,0008
140 DATA 4CE8,000C,0010,48ED,000F,44F0,4A6D
150 DATA 4042,4CED,00E0,0018,4CED,0003,4560
160 DATA 48E8,0003,0000,4E75,STOP
170 !
180 I=0
190 RESTORE 130
200 READ Hex$
210 IF Hex$="STOP" THEN 260
220 Code(I)=IVAL(Hex$,16)
230 I=I+1
240 GOTO 200
250 !
260 Address=DVAL("5C0000",16)
270 PRINT " Address Byte(s)"
280 CALL Showbytes("Card ID",Address+1,1)
290 CALL Showbytes("Status",Address+33,1)
300 !

33

310 X1=1/3
320 X2=1/3
330 X3=0.0
340 ! get addresses of code and last variable in COM
350 Addrcode=READIO(9827,Code(0))
360 Addrdata=READIO(9827,X3)
370 !
380 CALL Showbytes("CODE",Addrcode+0,I*2)
390 CALL Showbytes("X3",Addrdata+0,8)
400 !
410 ! First RESET the card
420 Address=6029312
430 WRITEIO 9826,Address+1;1
440 ! -------------------
450 T0=TIMEDATE
460 FOR I=1 TO 5000
470 WRITEIO 9827,Addrcode;Addrdata
480 NEXT I
490 T1=TIMEDATE
500 PRINT "BASIC + Machine Code:"
510 PRINT "====================="
520 PRINT "dT=";T1-T0
530 PRINT X1;"*";X2;"=";X3
540 ! -------------------
550 T0=TIMEDATE
560 FOR I=1 TO 5000
570 X3=X1*X2
580 NEXT I
590 T1=TIMEDATE
600 PRINT "BASIC:"
610 PRINT "======"
620 PRINT "dT=";T1-T0
630 PRINT X1;"*";X2;"=";X3
640 ! -------------------
650 END
660 !
670 SUB Showbytes(Label$,Address,N)
680 INTEGER Bdata,I,J
690 DIM H$[8]
700 PRINT USING "#,10A,2X,AAAAAAAA,X";Label$,DVAL$(Address,16)
710 Address=Address-1
720 J=0
730 FOR I=1 TO N
740 Bdata=READIO(9826,Address+I)
750 H$=DVAL$(Bdata,16)
760 IF J=16 THEN
770 PRINT
780 PRINT RPT$(" ",21);
790 J=0
800 END IF
810 PRINT USING "#,X,2A";H$[7,8]
820 J=J+1
830 NEXT I
840 PRINT
850 SUBEND

The program should produce this output.

 Address Byte(s)
Card ID 005C0001 0A
Status 005C0021 00
CODE FFFFA7FE 4B F9 00 5C 00 00 20 40 4C E8 00 03 00 08 4C E8
 00 0C 00 10 48 ED 00 0F 44 F0 4A 6D 40 42 4C ED
 00 E0 00 18 4C ED 00 03 45 60 48 E8 00 03 00 00
 4E 75
X3 FFFFA93E 00 00 00 00 00 00 00 00

BASIC + Machine Code:
=====================
dT= 2.54000854492
 .333333333333 * .333333333333 = .111111111111

BASIC:
======

34

dT= 3.04998779297
 .333333333333 * .333333333333 = .111111111111

Exploring the Mandelbrot Set

A more compute-intensive application with floating point numbers is the iteration loop required for

determining the behavior of a point in a Mandelbrot set. The results show a clear reduction of the

execution time by using the FPU.

Running the Example=2 case with Maxiterations=25.

Block
Size

BASIC Version
without FPU

BASIC+Assembler
using FPU

Factor
rel. BASIC

64 4.040008545 s 2.309997559 s 0.572

32 12.700012207 s 6.029998779 s 0.475

6 43.779998779 s 17.399993897 s 0.397

8 160.569976807 s 56.149993897 s 0.350

4 620.649993896 s 199.599975590 s 0.322

2 2438.190002440 s 747.119995117 s 0.306

The corresponding pure BASIC program is listed below.

10 ! ===============================
20 !
30 ! Fractal Program
35 ! BASIC Version
40 !
50 ! For color graphics e.g. HP9836C
60 !
70 ! Martin Hepperle, 2022
80 ! ================================
90 OPTION BASE 0
100 ! HP 9836: 512x390
110 W=512
120 H=390
130 ALLOCATE REAL Re(W),Im(H)
140 INTEGER Rw,P,Q,N
150 !
160 Example=2
170 !
180 SELECT Example
190 CASE 1
200 ! a) full Mandelbroy figure
210 Xcenter=-.55
220 Ycenter=0.
230 Xwidth=2.9
240 !
250 CASE 2
260 ! b) Zoomed in
270 Xcenter=-.13
280 Ycenter=-1.0
290 Xwidth=.1
300 CASE ELSE
310 PRINT "Unknown case, enter Xcenter,Ycenter,Xwidth"
320 INPUT Xcenter,Ycenter,Xwidth
330 END SELECT
340 Yheight=Xwidth/RATIO
350 Xmin=Xcenter-Xwidth/2
360 Xmax=Xcenter+Xwidth/2
370 Ymin=Ycenter-Yheight/2
380 Ymax=Ycenter+Yheight/2
390 Rw=64
400 !
410 Dx=(Xmax-Xmin)/(W-1)

35

420 Dy=(Ymax-Ymin)/(H-1)
430 !
440 ! Set up x- and y-stations
450 FOR P=0 TO W-1
460 Re(P+1)=Xmin+P*Dx
470 NEXT P
480 FOR Q=0 TO H-1
490 Im(Q+1)=Ymin+Q*Dy
500 NEXT Q
510 PRINT "Arrays set up."
520 !
530 SHOW Xmin,Xmax,Ymin,Ymax
540 GCLEAR
550 AREA PEN 0
560 N=0
570 GRAPHICS ON
580 FRAME
590 REPEAT
600 T0=TIMEDATE
610 ! sweep over x and y
620 Wx=Dx*Rw
630 Wy=Dy*Rw
640 OUTPUT 2 USING "#,AA";CHR$(255)&CHR$(75)
650 OUTPUT 2 USING "#,AAA";VAL$(Rw)
660 FOR P=0 TO W-Rw STEP Rw
670 FOR Q=0 TO H-Rw STEP Rw
680 Z1=0
690 Z2=0
700 Z1q=0
710 Z2q=0
720 N=0
730 C1=Re(P)
740 C2=Im(Q)
750 Another:IF Z1q+Z2q>4 THEN Diverged
760 Z3=Z1q-Z2q
770 Z4=2*Z1*Z2
780 Z1=Z3+C1
790 Z2=Z4+C2
800 Z1q=Z1*Z1
810 Z2q=Z2*Z2
820 N=N+1
830 IF N=25 THEN
840 N=0
850 GOTO Diverged
860 END IF
870 GOTO Another
880 Diverged: AREA PEN N
890 MOVE Re(P),Im(Q)
900 RECTANGLE Wx,Wy,FILL
910 Done: NEXT Q
920 NEXT P
930 T1=TIMEDATE
940 PRINT Rw;T1-T0;"s"
950 Rw=Rw DIV 2
960 UNTIL Rw=0
970 PRINT "Done."
980 DEALLOCATE Re(*),Im(*)
990 END

The assembler subroutine replacing the inner iteration in the Q-loop looks like this:

 *---
 * Title : Mandelbrot-32081
 * Written by : Martin Hepperle
 * Date : 2022
 * Description: A Mandelbrot set iterator using the
 * NS-32081 Floating Point Unit on the
 * HP 98635A FPU card.
 * Uses long floats (64 bit IEEE-754).
 * Callable from HP BASIC with
 * INTEGER Code(150)
 * COM / Fpu / Real X,Y, Integer C,N
 * ... fill Code(*) with generated code words
 * Codeaddress = READIO(9827,Code(0))
 * Dataaddress = READIO(9827,C)

36

 * READIO 9827,Codeaddress;DataAddress
 *---

 ; We use a COMMON data structure in BASIC
 ; to convey parameters X and Y into this subroutine
 ; and to return the iteration count (color index) C
 ; COM / Fpu / Real X,Y,Integer C,N

 ; On entry:
 ; D0: address of N
 ; COM / / REAL X, Y, INTEGER C, N
 ; OFF LEN Name
 ; 0 2 N 16-bit INTEGER, input, max. iteration limit
 ; 2 2 C 16-bit INTEGER, output, iteration count
 ; 4 8 Y 64-bit REAL, input, point position
 ; 12 8 X 64-bit REAL, input

 ; CPU register usage:
 ; D0: initial: address of N
 ; D1:
 ; D2:
 ; D3:
 ; D4: iteration loop, current count
 ; D5: iteration loop, maximum count limit
 ; D6: used for bogus reads
 ; D7: used for bogus reads
 ; A5: address of FPU card
 ; A0: address of N
 ; A7: should not be changed (BASIC stack)
 ;
 ; We use 8-byte long floats for accuracy
 ; An alternate version with 4-byte floats
 ; could be slightly more efficient because
 ; more registers could be used for keeping
 ; intermediate results

 ; FPU register usage:
 ; (f0,f1): Re
 ; (f2,f3): Im
 ; (f4,f5): tmp
 ; (f6,f7): tmp

 ; The actual subroutine starts here
 ; Embed the words from here on
 ; into an BASIC INTEGER array

 ; a0: address of N
2040 move.l d0,a0
 ; a5: base address of FPU
4BF9 005C0000 lea $5C0000,a5

 ; Set initial values
 ; -----------------------
 ; Create a 64-bit zero
4280 clr.l d0
4281 clr.l d1
 ; 0.0 = to (f1,f0) Re
 ; 0.0 = to (f3,f2) Im
48ED 0003 44F8 movem.l d0-d1,movf_m_f1(a5)
48ED 0003 44F0 movem.l d0-d1,movf_m_f3(a5)
 ; no wait needed

 ; Reset iteration count
4244 clr.w d4
 ; Get iteration limit N (typically 25...100)
3A10 move.w (a0),d5

 LOOP:
 ; Test for divergence
 ; Calculate Re^2 + Im^2 - 4
 ; -----------------------
 ; Copy Re (f6,f7) from (f0,f1)
4A6D 4446 tst.w movl_f0_f6(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

37

 ; Square Re: Re^2 = (f6,f7) = (f6,f7)*(f6,f7)
4A6D 405E tst.w mull_f6_f6(a5)

 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; Copy Im (f4,f5) from (f2,f3)
4A6D 444C tst.w movl_f2_f4(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7
 ; Square Im: Im^2 (f4,f5) = (f4,f5)*(f4,f5)
4A6D 4054 tst.w mull_f4_f4(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; Add Im^2 to Re^2: Re^2 + Im^2 (f6,f7) = (f6,f7)+(f4,f5)
4A6D 4016 tst.w addl_f4_f6(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; Load (f4,f5) = 4.0
7004 move.l #4,d0
 ; convert from integer to long float
48ED 0001 4524 movem.l d0,movil_m_f4(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; Subtract 4.0: Re^2 + im^2 - 4 (f6,f7) = (f6,f7)-(f4,f5)
4A6D 4036 tst.w subl_f4_f6(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; Diverged?
 ; If (f6,f7) > 0 goto DONE
4CED 0003 4570 movem.l movlf_f6_m(a5),d0-d1
 ; d0 [SEEEEEEEEEEEMMMMMMMMMMMMMMMMMMMM]
 ; d1 [MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM]
 ; [10987654321098765432109876543210]
 ; test sign bit in d0
 ; -> Z is 1 if bit is zero, i.e. (f6,f7) is positive
0800 001F btst #31,d0
6700 007E beq DONE

 ; Not diverged: calculate next iteration
 ; ======================================
 ; Save Re: (f4,f5) = (f0,f1) for later
4A6D 4444 tst.w movl_f0_f4(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; Square Re: (f0,f1) = (f0,f1)*(f0,f1)
4A6D 4040 tst.w mull_f0_f0(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; Copy Im: (f6,f7) = (f2,f3)
4A6D 444E tst.w movl_f2_f6(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; Square Im: (f6,f7) = (f6,f7)*(f6,f7)
4A6D 405E tst.w mull_f6_f6(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; Subtract Im^2: Re^2 - Im^2 (f0,f1) = (f0,f1)-(f6,f7)
4A6D 4038 tst.w subl_f6_f0(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; Load X to d0-d1
4CE8 0003 000C movem.l $C(a0),d0-d1
48ED 0003 44E0 movem.l d0-d1,movf_m_f7(a5)
 ; no wait required
 ; Add x: Re^2 - Im^2 + X (f0,f1) = (f0,f1)+(f6,f7)
4A6D 4018 tst.w addl_f6_f0(a5)

38

 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7
 ; Re (f0,f1) now has new value

 ; use saved Re in (f4,f5)
 ; Multiply Im by Re: Im*Re (f2,f3) = (f2,f3)*(f4,f5)
4A6D 4052 tst.w mull_f4_f2(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; Multiply by 2: Im*Re*2 (f2,f3) = (f2,f3)*(f6,f7)
 ; by addition to self
4A6D 400A tst.w addl_f2_f2(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7

 ; Load Y to d0-d1
4CE8 0003 0004 movem.l $4(a0),d0-d1
48ED 0003 44E0 movem.l d0-d1,movf_m_f7(a5)
 ; no wait required
 ; Add Y: Im*Re*2 + Y (f2,f3) = (f2,f3)+(f6,f7)
4A6D 401A tst.w addl_f6_f2(a5)
 ; wait for completion (2 bogus reads)
4CED 00C0 0018 movem.l $18(a5),d6-d7
 ; Im (f2,f3) now has new value

 ; Iterate until count == d5 = MaxCount
5244 addq.w #1,d4
BA44 cmp.w d4,d5
6600 FF30 bne LOOP

 ; Iteration limit reached, return zero (black)
4244 clr.w d4

 DONE:
 ; Place count into integer value C
3144 0002 move.w d4,$2(a0)

4E75 rts

The corresponding BASIC program using this subroutine is listed below.

10 ! ================================
20 !
30 ! Fractal Program
40 !
50 ! HP 98635A Version
60 !
70 ! For color graphics e.g. HP9836C
80 !
90 ! Martin Hepperle, 2022
100 ! ================================
110 OPTION BASE 0
120 ! HP 9836: 512x390
130 W=512
140 H=390
150 ALLOCATE REAL Re(W),Im(H)
160 INTEGER Code(150)
170 DIM Hex$[4]
180 COM /Mandel/ REAL X,Y, INTEGER C,Maxdepth
190 INTEGER Rw,P,Q,N
200 ! select 1 or 2:
210 Example=2
220 Maxdepth=25
230 !
240 DATA 2040,4BF9,005C,0000
250 DATA 4280,4281,48ED,0003,44F8
260 DATA 48ED,0003,44F0,4244,3A10
270 DATA 4A6D,4446,4CED,00C0,0018
280 DATA 4A6D,405E,4CED,00C0,0018
290 DATA 4A6D,444C,4CED,00C0,0018
300 DATA 4A6D,4054,4CED,00C0,0018
310 DATA 4A6D,4016,4CED,00C0,0018
320 DATA 7004,48ED,0001,4524,4CED,00C0,0018

39

330 DATA 4A6D,4036,4CED,00C0,0018
340 DATA 4CED,0003,4570
350 DATA 0800,001F,6700,007E
360 DATA 4A6D,4444,4CED,00C0,0018
370 DATA 4A6D,4040,4CED,00C0,0018
380 DATA 4A6D,444E,4CED,00C0,0018
390 DATA 4A6D,405E,4CED,00C0,0018
400 DATA 4A6D,4038,4CED,00C0,0018
410 DATA 4CE8,0003,000C,48ED,0003,44E0
420 DATA 4A6D,4018,4CED,00C0,0018
430 DATA 4A6D,4052,4CED,00C0,0018
440 DATA 4A6D,400A,4CED,00C0,0018
450 DATA 4CE8,0003,0004,48ED,0003,44E0
460 DATA 4A6D,401A,4CED,00C0,0018
470 DATA 5244,BA44,6600,FF30
480 DATA 4244,3144,0002,4E75
490 DATA STOP
500 !
510 I=0
520 RESTORE
530 READ Hex$
540 ! IF (I MOD 12)=0 THEN PRINT
550 ! PRINT I;":";Hex$;" ";
560 IF Hex$="STOP" THEN 600
570 Code(I)=IVAL(Hex$,16)
580 I=I+1
590 GOTO 530
600 ! PRINT
610 IF Code(116)=25 THEN Code(116)=Maxdepth
620 !
630 ! Reset Card
640 Addrcard=6029312
650 WRITEIO 9826,Addrcard+1;1
660 !
670 Addrcode=READIO(9827,Code(0))
680 Addrdata=READIO(9827,Maxdepth)
690 ! PRINT Addrcode,Addrdata
700 !
710 SELECT Example
720 CASE 1
730 ! a) full Mandelbrot figure
740 Xcenter=-.55
750 Ycenter=0.
760 Xwidth=2.9
770 !
780 CASE 2
790 ! b) Zoomed in
800 Xcenter=-.13
810 Ycenter=-1.0
820 Xwidth=.1
830 CASE ELSE
840 PRINT "Unknown case, enter Xcenter,Ycenter,Xwidth"
850 INPUT Xcenter,Ycenter,Xwidth
860 END SELECT
870 Yheight=Xwidth/RATIO
880 Xmin=Xcenter-Xwidth/2
890 Xmax=Xcenter+Xwidth/2
900 Ymin=Ycenter-Yheight/2
910 Ymax=Ycenter+Yheight/2
920 Rw=64
930 !
940 Dx=(Xmax-Xmin)/(W-1)
950 Dy=(Ymax-Ymin)/(H-1)
960 !
970 ! Set up x- and y-stations
980 FOR P=0 TO W-1
990 Re(P+1)=Xmin+P*Dx
1000 NEXT P
1010 FOR Q=0 TO H-1
1020 Im(Q+1)=Ymin+Q*Dy
1030 NEXT Q
1040 PRINT "Arrays set up."
1050 !
1060 SHOW Xmin,Xmax,Ymin,Ymax
1070 GCLEAR

40

1080 AREA PEN 0
1090 N=0

1100 GRAPHICS ON
1110 FRAME
1120 REPEAT
1130 T0=TIMEDATE
1140 ! sweep over x and y
1150 Wx=Dx*Rw
1160 Wy=Dy*Rw
1170 OUTPUT 2 USING "#,AA";CHR$(255)&CHR$(75)
1180 OUTPUT 2 USING "#,AAA";VAL$(Rw)
1190 FOR P=0 TO W-Rw STEP Rw
1200 FOR Q=0 TO H-Rw STEP Rw
1210 X=Re(P)
1220 Y=Im(Q)
1230 WRITEIO 9827,Addrcode;Addrdata
1240 AREA PEN C
1250 MOVE Re(P),Im(Q)
1260 RECTANGLE Wx,Wy,FILL
1270 Done:NEXT Q
1280 NEXT P
1290 T1=TIMEDATE
1300 PRINT Rw;T1-T0;"s"
1310 Rw=Rw DIV 2
1320 UNTIL Rw=0
1330 PRINT "Done."
1340 DEALLOCATE Re(*),Im(*)
1350 END

41

Connecting a “Centronics” Printer to the HP 9836

My HP 9836 did not have a parallel Centronics type interface, but I had a 98622A GPIO interface.

This interface is very common and has a wide 50-pin “Centronics” style female Amphenol plug. It

supports 8- and 16-bit input and output via 16 dedicated I/O-lines. Additional control lines are

available for handshaking. Switches allow selecting logic sense and handshaking options. Ideally you

have a matching male connector with screw terminals and cable; otherwise you have to improvise with

a 50-pin clip connector and additional screws. For these wide Amphenol connectors it is essential that

the connectors are held firmly in place.

The other end of the cable was terminated by a female DB-25 connector, so that I can connect regular

Centronics printer cables as used for IBM-PC systems. Alternatively, for directly plugging into a

printer, you can of course attach a 36-pin male Amphenol connector to this end.

This simple cable works with my Epson MX and FX printers. Most of the actual work is to identify

the correct wires inside the cable.

Note that the behavior and timing of the STROBE/ and ACK/ signals are not 100% Centronics

compatible: STROBE/ should be pulsed when the data is ready for a minimum of 0.5 μs but not held

down over the whole output period. However, the falling edge of STROBE/ triggers the printer data

latch and thus works with most printers (tested with Epson FX-80 and LQ-500). When PFLG is

inverted, the rising edge of ACK/ ends the data transmission, but this can also be recognized in non-

inverted mode – in this case the falling edge of the ACK/ signal ends data transmission. The absolute

times labeled in Figure 34 are probably not 100% accurate, but the relative signal timing is correct.

Figure 34: Timing of control lines during output of 3 characters.

Note that HP BASIC has some implicit line length limits which can be overridden. Usually a CR/LF

end-of-line (EOL) sequence is inserted after 80 characters have been output. Depending on the BASIC

version it is possible to add a WIDTH parameter to the PRINTER IS statement. Also, the PRINT USING

statement allows suppressing the EOL sequence. This feature is important when you output binary

data for bitmap images, which can easily exceed the 80 character limit so that an EOL character

sequence would destroy the bit pattern sequence. In all cases it is simpler to use the OUTPUT statement

with a trailing ‘;’ character for writing raw bytes to the GPIO interface.

42

Switch 0/1 Description

PCTL 1 invert, falling edge = STROBE/

PFLG 0 rising edge = ACK/

PSTS 0 don’t care

HSHK 0 pulse mode

DIN 0 don’t care

DOUT 0 positive logic

Table 4: Settings on the GPIO interface.

Figure 35: DIP switch.

My interface has a select code of 16 so that any CAT or LIST output can be printed easily by issuing a

PRINTER IS 16

The HP systems directly support dumping graphics screens to HP printers. A dump of the graphics

screen of a HP 9826 to an Epson printer can be obtained by a program fragment like the following.

See also Table 1 for the address of the graphics RAM in the HP 9826.

REM
REM Rotated Screen Dump HP 9826 to Epson 8-pin mode
REM
Gpio=16
Esc$=CHR$(27)
REM set line spacing to 8/72 inch
OUTPUT Gpio;Esc$;"A";CHR$(8);
REM upper left of HP 9826 screen memory
Adr =5439489
FOR X=1 TO 50
 REM start below the last row of this column
 A=Adr+300*100
 REM normal density bitmap sequence of 1*256+44*1=300 bytes
 OUTPUT Gpio;Esc$;"K";CHR$(44);CHR$(1);
 FOR Y=1 TO 300
 REM move up by onerow
 A=A-100
 OUTPUT Gpio;CHR$(READIO(9826,A));
 NEXT Y
 OUTPUT Gpio;CHR$(13);CHR$(10);
 REM move to next 8-bit column
 Adr=Adr+2
NEXT X
REM reset printer and eject page
OUTOUT Gpio;Esc$;"@";Chr$(12)
END

43

Figure 36: This Cable allows attaching a standard Centronics printer cable to the
GPIO interface. The DB-25 connector has been equipped with hex nuts for
securing the printer cable.

My simple wiring uses only STROBE/ and ACK/ lines. PAPER OUT, SELECT or BUSY are not

handled. This is o.k. for most practical cases.

Amphenol

50-pin

Wire

Color

GPIO

Signal

D-SUB

DB-25

Amphenol 57

36-pin

Direction

I/F – Printer

Centronics

Signal

17 white/black DIO0 2 2 →

data bits

16 white/brown DIO1 3 3 →

15 white/red DIO2 4 4 →

14 white/orange DIO3 5 5 →

13 white/yellow DIO4 6 6 →

12 white/green DIO5 7 7 →

11 white/blue DIO6 8 8 →

10 white/violet DIO7 9 9 →

19 white/gray PCTL 1 1 → STROBE/

44 grey PFLG 10 10 ← ACK/

1 white GND 18-25 19-30, 16 − GND

Table 5: Wiring the GPIO card to a Centronics cable (several GND wires available).

44

HP 9836 Screen Control

Control Codes

Chr$(7) BEL sound the keybords beeper
Chr$(8) BS backspace, not beyond first column of line
Chr$(10) LF move cursor down 1 line
Chr$(12) FF scroll screen up, print two blank lines, place cursor in first column of second line
Chr$(13) CR move cursor to first column of current line

Character Enhancement Codes

Bitmask
10001111
| |||| bit 0 inverse
| ||| bit 1 blinking
| || bit 2 underline
| | bit 3 half bright
bit 7 always 1

Chr$(128) all enhancements off
Chr$(129) inverse
Chr$(130) blinking
Chr$(131) invers and blinking
Chr$(132) underline
Chr$(133) underline and inverse
Chr$(134) underline and blinking
Chr$(135) underline, inverse, and blinking
Chr$(136) half bright white
Chr$(137) half bright and inverse red
Chr$(138) half bright and blinking yellow
Chr$(139) half bright, inverse and blinking green
Chr$(140) half bright and underline cyan
Chr$(141) half bright, underline and inverse blue
Chr$(142) half bright, underline and blinking magenta
Chr$(143) half bright, underline, inverse and blinking black

Key Codes sent to Kbd as a second Character after Chr$(255)

33 ! stop
73 I clr I/O
35 # clear line
37 % clear from cursor to end of line
42 * insert line at cursor
43 + toggle insert character mode
45 - delete character at cursor
47 / delete line at cursor
60 <
62 >
71 G shift cursor to end of line
72 H shift cursor to start of line
75 K clear screen
76 L toggle graphics
77 M toggle alpha
86 V cursor down
84 T shift cursor down
91 [clear tab at cursor
93] set tab at cursor
94 ^ cursor up

45

87 W shift cursor up
41) tab
40 (shift tab
88 X execute
69 E enter
82 R run
80 P pause
67 C continue

References
[1] HP 9000 Series 200 Computers “Pascal 3.0 System Designer’s Guide”, 98615-90074, February

1985 Edition 1.

[2] Duell, Tony, “9826-9836 Schematics”, 184 pages.

[3] Datasheet NS-32081-10/NS-32081-15 Floating Point Units, National Semiconductor.

[4] Möller, Udo, http://cpu-ns32k.net [visited 7 October 2022]

