
1

A Graphics Terminal with TTGO-VGA32

Martin Hepperle, July 2020

The TTGO VGA-32 is a small board which uses a solder-on ESP32 processor module. This processor is a quite

powerful member of the ESP processor family and offers many interesting features including interaction with

wireless networks. Similar to the ESP8266, its low cost makes it attractive choice for many hobby development

boards. A set of libraries for the Arduino environment makes it easy to use many of its features.

 Hardware

The TTGO VGA-32 is available in several incarnations, currently in versions V1.2 to V1.4. I used a V1.2 board.

It has interfaces to make a small multi-purpose computer system:

 Standard PS/2 keyboard,

 Standard PS/2 Mouse,

 Standard VGA Monitor,

 Power supply,

 Audio output,

 Serial Interface.

1.1. Serial Connection

The V1.2 board comes with a 4-pin pad arrangement, which accepts a pin header with 2 mm pitch. The sequence

of the four pins equals that of many common TTL-RS-232C adapter boards.

Label 3.3V DIO12 DIO02 GND

Purpose VCC RXD TXD GND

Table 1: Layout of the header pads on the TTGO-VGA32 board.

The four header pads as well as the FabGL examples (which use GPIO 2 and 12 for serial communication)

suggest connecting these pads to a serial interface.

In fact everything worked fine - as long the GPIO pin 12 was connected after the system had been powered up.

However, if it is connected to RXD at boot time, the system won’t start. It is not really practical to disconnect

and connect the RXD line at each system start.

After reading the ESP32 datasheet I learned that the pin GPIO 12 is called MTDI at boot time. It determines the

voltage used to drive the Flash memory (unconnected = Low = 3.3V). If this pin is connected to the RXD line of

the idling TTL-RS232C converter, it is driven high and the Flash voltage is set to 1.8V. This is too low for the

3.3V system and prevents booting.

After soldering a wire to the neighboring GPIO 14 pad of the ESP32 module and connecting it (instead of

GPIO 12) to RXD of the TTl-RS232C converter, the system started without any problems.

Conclusion: the pin header seems to be designed for other purposes, not as a serial interface. This is contrary to

what the examples in the FabGL library and its layout suggest.

In the sketch I used Serial for all communication and replaced the initialization in the setup() routine like so:

// OLD: GPIO 12 blocks boot process

// Serial.begin(BAUD_RATE, SERIAL_8N1, 12, 2);

// NEW: for TTGO-VGA32 use GPIO 14 (RX) and 2 (TX)

Serial.begin(BAUD_RATE, SERIAL_8N1, 14, 2);

Since then, everything worked as expected.

2

1.2. Power Connectors

Two connectors can be used to provide power:

 a Micro USB connector can be used to plug in a common 5V USB power supply,

 a small two pin connector can be used to connect to a 3,6V Lithium-Polymer battery.

There may be a charging circuit on the board, but you should use this only after careful monitoring the

charginging case. There seems to exist an earlier production run of these board where a fuse was mounted

instead of a diode, which could lead to overcharging a LiPo battery and subsequent fire.

1.3. Audio Connectors

Two audio connectors are mounted side by side and allow connecting the output signal of the 1W mono audio

amplifier NS4150:

 a connector with two pins and a white plastic rim for an internal audio output device like a small

loudspeaker,

 a jack for plugging in headphones or other audio systems.

Figure 1 Connecting the power supply, keyboard, mouse, monitor and serial interface is

easy.

 Software

A very interesting piece of software for the ESP32 is the FabGL library which offers many useful functions for

video and audio output. This library can be used with the VGA-32 board. One of the examples included with the

FabGL library is a Terminal emulator which supports ANSI escape sequences.

I have taken this example and extended it to add Tektronix control sequences for monochrome vector graphics

capability.

First I added an audible BELL because the FabGL library already has audio capabilities. In order to make error

beeps audible I added code to recognize the ^G (BELL, 0x07) control character.

Secondly, I added an interpreter for Tektronix control sequences for monochrome vector graphics capability. For

this purpose the Terminal class was sub-classed into a TekTerminal class and a handful of the private methods of

the Terminal class had to be declared virtual to allow overriding them in the TekTerminal class. The result is a

mixed emulation of an ANSI terminal which can be switched into Tektronix emulation mode.

To switch into Tektronix emulation the escape sequence

ESC [? 38 h

has to be used. This is a sequence also use by xterm to open its Tektronix window.

Switching back from Tektronix mode to ANSI mode is accomplished by the sequence

3

ESC ETX

Notes:

 Different line types (1…5) are translated into different intensity levels, e.g. 5 produces a faint green

line.

 Graphical input GIN mode is not supported.

 The available resolution of 640 x 350 pixels is considerably coarser than that of a real Tektronix

terminal. Therefore fine details will be lost.

2.1. Using a German Keyboard Layout

For using my German keyboard I had to switch to the desired layout by inserting a line after the PS2Controller

has been started:

[...]

 PS2Controller.begin(PS2Preset::KeyboardPort0);

 /* switch layout to German */

#ifdef GERMAN

 PS2Controller.keyboard()->setLayout(&fabgl::GermanLayout);

#endif

[...]

There are still some smaller inconsistencies in this layout, e.g. with the numeric keypad and some extra keys, but

it is very useable.

Figure 2 The terminal in action with one of my CP/M-80 GSX test programs.

4

Figure 3 Close-up view of the output in 640 x 350 VGA mode on a TFT screen.

5

Figure 4 The innards with VGA32 board, serial interface and loudspeaker.

Figure 5 The completed terminal for Tektronix and HP terminal emulation.

6

2.2. ESP32 module and the TTGO-VGA32 Board

Figure 6 This ESP32 module is soldered onto the TTGO VGA32 board. I soldered a wire

to GPIO14 for RXD of the TTL-RS-232C converter, instead of using the GPIO12

on the 4-pin header.

Figure 7 TTGO VGA32 board Version 1.2 with GPIO 2 and an extra wire to GPIO 14 for

the serial interface.

7

Figure 8 Schematics proposed by the author of the FabGL library. The TTGO VGA32

Version 1.2 board follows this scheme and adds USB, audio amplifier and battery

charging circuits.

ESP32 Connection ESP32 Connection

GPIO 1 USB interface (TXD) GPIO 23 VGA Hsync

GPIO 2 to header (TXD) GPIO 25 Audio Out

GPIO 3 USB interface (RXD) GPIO 26 Mouse Data

GPIO 4 VGA Blue GPIO 27 Mouse Clock

GPIO 5 VGA Blue GPIO 32 Keyboard Data

GPIO 12 4 pin header GPIO 33 Keyboard Clock

GPIO 15 VGA Vsync GPIO 36 Button 2

GPIO 18 VGA Green RST Button 1

GPIO 19 VGA Green

GPIO 21 VGA Red

GPIO 22 VGA Red GPIO 14 solder wire (RXD)

Table 2: Pins used on the TTGO-VGA32 V 1.2 boards. GPIOs 1 and 3 are used for the

USB-Serial connection of the bootloader. GPIOs 2 and 14 are used for the Serial

connection.

8

ESP32 Connection ESP32 Connection

GPIO 1 TXD / USB interface GPIO 21 VGA Red

GPIO 2 to header (TXD) GPIO 22 VGA Red

GPIO 3 RXD / USB interface GPIO 23 VGA Hsync

GPIO 4 VGA Blue GPIO 25 Audio Out

GPIO 5 VGA Blue GPIO 26 Mouse Data

GPIO 12 to header GPIO 27 Mouse Clock

GPIO 13 to header GPIO 32 Keyboard Data

GPIO 14 to header (RXD) GPIO 33 Keyboard Clock

GPIO 15 VGA Vsync GPIO 34 to header

GPIO 18 VGA Green GPIO 36 Button 2

GPIO 19 VGA Green RST Button 1

 GPIO 39 to header

Table 3: Pins used on the TTGO-VGA32 V1.4 boards. GPIOs 1 and 3 are used for the

USB-Serial connection of the bootloader. GPIOs 2 and 14 are used for the Serial

connection.

The two USB data lines are connected to the CP 2104 USB-TTL converter chip. This converts them to a 3.3V

serial TTL signal which is connected to the TXD (GPIO 1) and RXD (GPIO 3) lines of the ESP32.

2.3. Buttons

Button 1 (close to the keyboard connector) on the TTGO VGA32 Board connects GND to RST and can be

pressed to reset the system.

Button 2 (close to the battery connector) pulls GPIO 36 to GND and may be used for user code. It could be used

to clear the Tektronix screen.

9

A simple HP 49G Demo Program

Even with a classical pocket calculator you can generate output on a Tektronix terminal. As a proof of concept I

wrote a small program which mimics the Plot application of the HP 49G calculator.

These routines require that the regular HP 49G PLOT application is used to setup either a Function or a Polar

plot. Besides defining the functions F(X) resp. R(X) the PLOT application must also be used to set up the

plotting window.

The application stores the equations in the list EQ and the plot parameters and type in the list PPAR.

The following programs use these two data structures.

Currently, the program can plot either function plots Y=f(X) or polar plots R=f(angle).

Figure 9 An test setup with an HP-49G calculator producing graphs in Tektronix format.

10

%%HP: T(3)A(D)F(.);

\<<

 TIME HMS\->

 TEKINI TEKEQ

 9600. BAUD OPENIO

 TEKGRAF

 PPAR DUP SIZE 1 - GET \->STR

 "FUNCTION" ==

 IF

 THEN TEKFUN

 ELSE TEKPOL

 END

 0 0 TEKMOVE

 DROP2 DROP2

 TEKEND

 ""

 1 TEQ SIZE

 FOR N

 N \->STR + ": " +

 TEQ N GET RCL \->STR DUP "'" POS 1 + 9999 SUB DUP "'" POS 1 - 1 SWAP SUB +

 " " +

 NEXT

 PR1

 DROP 'TEQ' PURGE 'TEKPAR' PURGE

 TIME HMS\-> SWAP - \->HMS

\>>

Listing 1: Main Program TEKPLOT for creating Function or Polar plots.

%%HP: T(3)A(D)F(.);

\<<

 PPAR 1. GET PPAR 2. GET PPAR 1. GET - C\->R 2. \->LIST

 { 4095. 3072. } / INV LIST\-> DROP R\->C

 2. \->LIST 'TEKPAR' STO

\>>

Listing 2: Initialization program TEKINI which creates the temporary equation file

TEKPAR from the PPAR file.

%%HP: T(3)A(D)F(.);

\<<

 { }

 1 { } EQ + SIZE

 FOR N

 { } EQ + N GET \->STR DUP "(" POS 1 - 1 SWAP SUB

 "'" + STR\-> +

 NEXT

 'TEQ' STO

\>>

Listing 3: Initialization program TEKEQ which creates the temporary equation file TEQ

from the EQ file. The function names must be like F1(X) and the term starting at

the opening parenthesis is stripped. We must force EQ to a list because it can be

either a list or a single function name.

11

%%HP: T(3)A(D)F(.);

\<<

 TEKPAR 1. GET C\->R TEKPAR 2. GET C\->R

 PPAR 1. GET C\->R DROP 0. TEKMOVE

 PPAR 2. GET C\->R DROP 0. TEKDRAW

 0 PPAR 1. GET C\->R SWAP DROP TEKMOVE

 0 PPAR 2. GET C\->R SWAP DROP TEKDRAW

 PPAR 4 GET \-> DX

 \<<

 1 TEQ SIZE

 FOR N

 PPAR 1. GET C\->R DROP DUP TEQ N GET EVAL TEKMOVE

 PPAR 1. GET C\->R DROP PPAR 2. GET C\->R DROP

 FOR X

 X DUP TEQ N GET EVAL TEKDRAW

 DX STEP

 NEXT

 \>>

\>>

Listing 4: Subroutine TEKPFUN for Function y = f(x) plots. The first lines draw the axes

lines. The step size is taken from PPAR. The first line places the four

transformation parameters 4:TX, 3:TY, 2:SX, 1:SY on the stack.

%%HP: T(3)A(D)F(.);

\<<

 TEKPAR 1. GET C\->R TEKPAR 2. GET C\->R

 PPAR 1. GET C\->R DROP 0. TEKMOVE

 PPAR 2. GET C\->R DROP 0. TEKDRAW

 0 PPAR 1. GET C\->R SWAP DROP TEKMOVE

 0 PPAR 2. GET C\->R SWAP DROP TEKDRAW

 PPAR 4 GET \-> DX

 \<<

 1 TEQ SIZE

 FOR N

 0 TEQ N GET EVAL DUP 0 COS * SWAP 0 SIN * TEKMOVE

 PPAR 3 GET 2 GET PPAR 3 GET 3 GET

 FOR X

 X TEQ N GET EVAL DUP

 X COS * SWAP X SIN * TEKDRAW

 DX STEP

 NEXT

 \>>

\>>

Listing 5: Subroutine TEKPOL for Polar R = f(angle) plots. The first lines draw the axes

lines. The step size is taken from PPAR. The first line places the four

transformation parameters 4:TX, 3:TY, 2:SX, 1: SY on the stack.

%%HP: T(3)A(D)F(.);

\<<

 27. CHR "[?38h" + 27. CHR + 12. CHR + 7 CHR + XMIT DROP

\>>

Listing 6: Subroutine TEKGRAF switches to Tektronix graphics mode..

%%HP: T(3)A(D)F(.);

\<<

 28. CHR 27. CHR + 3. CHR + 7. CHR + XMIT DROP

\>>

Listing 7: Subroutine TEKEND switches back to ANSI terminal mode.

12

%%HP: T(3)A(D)F(.);

\<<

 TEKXY 29. CHR SWAP + XMIT DROP

\>>

Listing 8: Subroutine TEKMOVE for moving the current pen to the position given on the

stack (1:X, 2:Y). The stack must also contain the four transformation parameters

6: TX, 5: TY, 4: SX, 3: SY from TPAR.

%%HP: T(3)A(D)F(.);

\<<

 TEKXY XMIT DROP

\>>

Listing 9: Subroutine TEKDRAW for drawing a line from the current pen position to the

position given on the stack (1:X, 2:Y). The stack must also contain the four

transformation parameters 6:TX, 5:TY, 4:SX, 3:SY from TPAR.

ASSEMBLE

 NIBASC /HPHP49-C/

 (TEKXY.s)

 (Bring X and Y into Tektronix format.)

 (Stack also contains the transformation)

 (parameters extracted from TEKPAR.)

 (These map from User space to device space,)

 (which is integer in 4096x3072.)

RPL

:: (1:Y 2:X 3:SY 4:SX 5:Y0 6:X0)

 CK2&Dispatch

 REALREAL (need at least 2 Reals on the stack)

 ::

 (translate and scale Real X, Y values)

 5PICK %- (1:Y-Y0 2:X 3:SY 4:SX 5:Y0 6:X0)

 3PICK %* (1:[Y-Y0]*SY 2:X 3:SY 4:SX 5:Y0 6:X0)

 SWAP (1:X 2:[Y-Y0]*SY 3:SY 4:SX 5:Y0 6:X0)

 BINT6 PICK %- (1:X-X0 2:[Y-Y0]*SY 3:SY 4:SX 5:Y0 6:X0)

 4PICK %* (1:[X-X0]*SX 2:[Y-Y0]*SY 3:SY 4:SX 5:Y0 6:X0)

 (now bring these 2 integer values IX, IY into Tektronix format: a 5-character string)

 COERCE2 (convert IX, IY values to BINT)

 (note: #/ leaves r and q on stack)

 BINT128 #/ BINT32 #+ #>CHR CHR>$ (C4: 0.0.1.X12.X11.X10.X9.X8, to string)

 SWAP BINT4 #/ BINT64 #+ #>CHR ROTSWAP >T$ (C5: 0.1.0.X7.X6.X5.X4.X3, append to C4: C4&C5)

 ROT BINT128 #/ BINT32 #+ #>CHR 4UNROLL (C1: 0.0.1.Y12.Y11.Y10.Y9.Y8)

 BINT4 #/ BINT96 #+ #>CHR ROTSWAP >H$ (C3: 0.1.1.Y7.Y6.Y5.Y4.Y3, prepend to C4&C5)

 UNROT #2* #2* #+ BINT96 #+ #>CHR >H$ (C2: 0.1.1.0.Y2.Y1.X2.X1, append to C1: C1&C2)

 SWAP >H$ (finally: C1&C2&C3&C4&C5)

 (leaves a concatenated string of 5 characters:)

 (C1: [0.0.1.Y12.Y11.Y10.Y9.Y8])

 (C2: & [0.1.1.0.Y2.Y1.X2.X1])

 (C3: & [0.1.1.Y7.Y6.Y5.Y4.Y3])

 (C4: & [0.0.1.X12.X11.X10.X9.X8])

 (C5: & [0.1.0.X7.X6.X5.X4.X3])

 ;

;

Listing 10: This routine TEKXY was initially written in UserRPL which was rather slow. It

was then rewritten with the help from some HP-Forum members in SysRPL for

speed. It expects the four transformation parameters from TEKPAR on the stack

as well as the X and Y values in user coordinates. Another solution provided by

forum members was written in assembler (not shown here).

13

ASSEMBLE

 NIBASC /HPHP49-C/

 (TEKXY.s)

 (Bring X and Y into Tektronix format.)

 (Stack also contains the transformation)

 (parameters extracted from TEKPAR.)

 (These map from User space to device space,)

 (which is integer in 4096x3072.)

RPL

:: (1:Y 2:X 3:SY 4:SX 5:Y0 6:X0)

 CK2&Dispatch

 REALREAL (need at least 2 Reals on the stack)

 ::

 (translate and scale Real X, Y values)

 5PICK %- (1:Y-Y0 2:X 3:SY 4:SX 5:Y0 6:X0)

 3PICK %* (1:[Y-Y0]*SY 2:X 3:SY 4:SX 5:Y0 6:X0)

 SWAP (1:X 2:[Y-Y0]*SY 3:SY 4:SX 5:Y0 6:X0)

 6PICK %- (1:X-X0 2:[Y-Y0]*SY 3:SY 4:SX 5:Y0 6:X0)

 4PICK %* (1:[X-X0]*SX 2:[Y-Y0]*SY 3:SY 4:SX 5:Y0 6:X0)

 (now truncate these to integer and bring them into Tektronix format: a 5-character string)

 COERCE2 (convert IX, IY values to BINT)

 CODEM

 GOSBVL =POP2#

 C+C.A CSL.A

 ACEX.X A+A.A

 ASL.A ASL.M ASL.M

 ASR.A ASR.A

 ACEX.A

 ASL.M ASL.W A+C.A

 A+A.A C=A.X

 ASR.A ASR.A ASR.A

 C+C.A CSL.A

 A+C.A ASL.M

 LC 4020606020

 P=9

 A!C.WP

 GOSBVL =SAVPTR

 GOVLNG =PUSHhxsLoop

 ENDCODE

 # 02A2C

 CHANGETYPE

 (leaves a concatenated string of 5 characters:)

 (C1: [0.0.1.Y12.Y11.Y10.Y9.Y8])

 (C2: & [0.1.1.0.Y2.Y1.X2.X1])

 (C3: & [0.1.1.Y7.Y6.Y5.Y4.Y3])

 (C4: & [0.0.1.X12.X11.X10.X9.X8])

 (C5: & [0.1.0.X7.X6.X5.X4.X3])

 ;

;

Listing 11: This alternative routine TEKXY was written in Saturn assembler to minimize

run time by Werner from the HP Forum. The test for the number of REAL

parameters has not yet been adapted – six must be provided by the caller.

%%HP: T(3)A(D)F(.);

{ Y1 R1 Y3 Y2 }

Listing 12: The temporary file TEQ stores the stripped equation names; it is created by

TEKEQ from the list in EQ. The actual name of each equation (Y… or R…) does

not matter – they all take one parameter and return one result.

%%HP: T(3)A(D)F(.);

{ (0.,0.) (11.375,3072.) }

Listing 13: The temporary file TEKPAR stores the offset (TX,TY) and scaling factors

(SX,SY) for TEKXY; it is created by TEKINI.

14

Figure 10 Switching between the different display modes while in in Tektronix mode is

accomplished by control characters or short escape sequences.

